메뉴 건너뛰기




Volumn 137, Issue , 2015, Pages 1004-1015

A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon

Author keywords

Adsorption; Brilliant green; Hybrid artificial neural network; Partial swarm optimization; Zinc sulfide nanoparticle

Indexed keywords

ACTIVATED CARBON; CHEMICALS REMOVAL (WATER TREATMENT); FORECASTING; II-VI SEMICONDUCTORS; KINETIC PARAMETERS; KINETIC THEORY; LINEAR REGRESSION; MEAN SQUARE ERROR; NANOPARTICLES; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); SOLUTIONS; STATISTICAL TESTS; SULFUR COMPOUNDS; SYNTHESIS (CHEMICAL); ZINC SULFIDE;

EID: 84907480723     PISSN: 13861425     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.saa.2014.08.011     Document Type: Article
Times cited : (129)

References (66)
  • 47
    • 84907488807 scopus 로고
    • Ph.D. Thesis, University of Birmingham, Birmingham, UK
    • Y.S. Ho, Ph.D. Thesis, University of Birmingham, Birmingham, UK, 1995.
    • (1995)
    • Ho, Y.S.1
  • 49
    • 3042658866 scopus 로고    scopus 로고
    • Y.S. Ho Water Res. 38 2004 2962 2964
    • (2004) Water Res. , vol.38 , pp. 2962-2964
    • Ho, Y.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.