메뉴 건너뛰기




Volumn 69, Issue , 2012, Pages 91-96

Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction

Author keywords

Artificial neural network (ANN); Diplotaenia cachrydifolia; Essential oils; Levenberg Marquardt (LM); Supercritical fluid extraction

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELS; COEFFICIENT OF DETERMINATION; DILL-APIOLE; DIPLOTAENIA CACHRYDIFOLIA; ERROR BACK-PROPAGATION; EXTRACTION TIME; EXTRACTION YIELD; HIDDEN NEURONS; INPUT PARAMETER; LEVENBERG-MARQUARDT; LEVENBERG-MARQUARDT ALGORITHM; MEAN SQUARED ERROR; MULTILAYER FEEDFORWARD NEURAL NETWORKS; PREDICTIVE MODELS; THREE-LAYER;

EID: 84863952623     PISSN: 08968446     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.supflu.2012.05.006     Document Type: Article
Times cited : (95)

References (29)
  • 1
    • 31644448178 scopus 로고
    • Umbelliferea
    • K.H. Rechinger, Akademische Druck-u. Verlagsanstalt Graz
    • K.H. Rechinger Umbelliferea K.H. Rechinger, Flora Iranica vol. 68 1982 Akademische Druck-u. Verlagsanstalt Graz 4 16
    • (1982) Flora Iranica , vol.68 , pp. 4-16
    • Rechinger, K.H.1
  • 4
    • 33749014401 scopus 로고    scopus 로고
    • Supercritical fluid extraction and fractionation of natural matter
    • DOI 10.1016/j.supflu.2006.03.020, PII S0896844606001008
    • E. Reverchon, and I. De Marco Supercritical fluid extraction and fractionation of natural matter J. Supercritical Fluids 38 2006 146 166 (Pubitemid 44444936)
    • (2006) Journal of Supercritical Fluids , vol.38 , Issue.2 , pp. 146-166
    • Reverchon, E.1    De Marco, I.2
  • 5
    • 53749085067 scopus 로고    scopus 로고
    • Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion
    • S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion Applied Soft Computing 9 2009 237 244
    • (2009) Applied Soft Computing , vol.9 , pp. 237-244
    • Mandal, S.1    Sivaprasad, P.V.2    Venugopal, S.3    Murthy, K.P.N.4
  • 6
    • 34347379500 scopus 로고    scopus 로고
    • Modeling and optimization. II. Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction
    • D. Bas, and I.H. Boyaci Modeling and optimization. II. Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction Journal of Food Engineering 78 2007 846 854
    • (2007) Journal of Food Engineering , vol.78 , pp. 846-854
    • Bas, D.1    Boyaci, I.H.2
  • 7
    • 19944395225 scopus 로고    scopus 로고
    • Artificial neural network based modeling of heated catalytic converter performance
    • M.A. Akcayol, and C. Cinar Artificial neural network based modeling of heated catalytic converter performance Applied Thermal Engineering 25 2005 2341 2350
    • (2005) Applied Thermal Engineering , vol.25 , pp. 2341-2350
    • Akcayol, M.A.1    Cinar, C.2
  • 8
    • 37349085943 scopus 로고    scopus 로고
    • Modelling of colour perception of different age groups using artificial neural networks
    • DOI 10.1016/j.eswa.2007.02.036, PII S0957417407000917
    • E. Kose Modelling of colour perception of different age groups using artificial neural networks Expert Systems with Applications 34 2008 2129 2139 (Pubitemid 350298233)
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 2129-2139
    • Kose, E.1
  • 10
    • 3042836932 scopus 로고    scopus 로고
    • Assessment of individual risk of death using self-report data: An artificial neural network compared with a frailty index
    • DOI 10.1111/j.1532-5415.2004.52319.x
    • X. Song, A. Mitnitski, C. Macknight, and K. Rockwood Assessment of individual risk of death using self-report data: an artificial neural network compared with a frailty index Journal of the American Geriatrics Society 52 2004 1180 1184 (Pubitemid 38869080)
    • (2004) Journal of the American Geriatrics Society , vol.52 , Issue.7 , pp. 1180-1184
    • Song, X.1    Mitnitski, A.2    MacKnight, C.3    Rockwood, K.4
  • 11
    • 44149097594 scopus 로고    scopus 로고
    • Application of artificial neural networks to predict chemical desulfurization of Tabas coal
    • E. Jorjani, C.S. Chehreh, and S.H. Mesroghli Application of artificial neural networks to predict chemical desulfurization of Tabas coal Fuel 87 2008 2727 3273
    • (2008) Fuel , vol.87 , pp. 2727-3273
    • Jorjani, E.1    Chehreh, C.S.2    Mesroghli, S.H.3
  • 13
    • 0036466560 scopus 로고    scopus 로고
    • Prediction of pores formation (porosity) in foods during drying: Generic models by the use of hybrid neural network
    • DOI 10.1016/S0260-8774(01)00063-2, PII S0260877401000632
    • M.A. Hussain, M. Shafiur Rahman, and C.W. Ng Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network Journal of Food Engineering 51 2002 239 248 (Pubitemid 33110489)
    • (2002) Journal of Food Engineering , vol.51 , Issue.3 , pp. 239-248
    • Hussain, M.A.1    Shafiur Rahman, M.2    Ng, C.W.3
  • 14
    • 0043169729 scopus 로고    scopus 로고
    • Dynamic modelling of milk ultrafiltration by artificial neural network
    • DOI 10.1016/S0376-7388(03)00211-4
    • M.A. Razavi, A. Mortazavi, and M. Mousavi Dynamic modeling of milk ultrafiltration by artificial neural network Journal of Membrane Science 220 2003 47 58 (Pubitemid 36945282)
    • (2003) Journal of Membrane Science , vol.220 , Issue.1-2 , pp. 47-58
    • Razavi, M.A.1    Mortazavi, A.2    Mousavi, M.3
  • 15
    • 33947276150 scopus 로고    scopus 로고
    • Optimization of an artificial neural network for thermal/pressure food processing: Evaluation of training algorithms
    • DOI 10.1016/j.compag.2007.01.005, PII S0168169907000178
    • J.S. Torrecilla, L. Otero, and P.D. Sanz Optimization of an artificial neural network for thermal/pressure food processing: evaluation of training algorithms Computers and Electronics in Agriculture 56 2007 101 110 (Pubitemid 46436171)
    • (2007) Computers and Electronics in Agriculture , vol.56 , Issue.2 , pp. 101-110
    • Torrecilla, J.S.1    Otero, L.2    Sanz, P.D.3
  • 16
  • 18
    • 47549093934 scopus 로고    scopus 로고
    • Artificial neural network models for predicting soil thermal resistivity
    • Y. Erzin, B.H. Rao, and D.N. Singh Artificial neural network models for predicting soil thermal resistivity International Journal of Thermal Sciences 47 2008 1347 1358
    • (2008) International Journal of Thermal Sciences , vol.47 , pp. 1347-1358
    • Erzin, Y.1    Rao, B.H.2    Singh, D.N.3
  • 20
    • 38149031560 scopus 로고    scopus 로고
    • A new artificial neural network-based response surface method for structural reliability analysis
    • J. Cheng, Q.S. Li, and R.C. Xiao A new artificial neural network-based response surface method for structural reliability analysis Probabilistic Engineering Mechanics 23 2008 51 63
    • (2008) Probabilistic Engineering Mechanics , vol.23 , pp. 51-63
    • Cheng, J.1    Li, Q.S.2    Xiao, R.C.3
  • 21
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Transactions Neural Networks 5 1994 989 993
    • (1994) IEEE Transactions Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 22
    • 0036756215 scopus 로고    scopus 로고
    • Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods
    • DOI 10.1049/ip-gtd:20020462
    • L.M. Saini, and M.K. Soni Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods IEE Proceedings of Generation, Transmission and Distribution 149 2002 578 584 (Pubitemid 35313930)
    • (2002) IEE Proceedings: Generation, Transmission and Distribution , vol.149 , Issue.5 , pp. 578-584
    • Saini, L.M.1    Soni, M.K.2
  • 23
    • 33645751073 scopus 로고    scopus 로고
    • A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro-fuzzy inference systems
    • A. Gulbag, and F. Temurtas A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro-fuzzy inference systems Sensors and Actuators B: Chemical 115 2006 252 262
    • (2006) Sensors and Actuators B: Chemical , vol.115 , pp. 252-262
    • Gulbag, A.1    Temurtas, F.2
  • 26
    • 0036311527 scopus 로고    scopus 로고
    • Supercritical fluid extraction of isoflavones from soybean flour
    • DOI 10.1016/S0308-8146(02)00106-1, PII S0308814602001061
    • M.A. Rostagno, J.M.A. Araujo, and D. Sandi Supercritical fluid extraction of isoflavones from soybean flour Food Chemistry 78 2002 111 117 (Pubitemid 34830416)
    • (2002) Food Chemistry , vol.78 , Issue.1 , pp. 111-117
    • Rostagno, M.A.1    Araujo, J.M.A.2    Sandi, D.3
  • 28
    • 37049034223 scopus 로고    scopus 로고
    • Continuous countercurrent deterpenation of lemon essential oil by means of supercritical carbon dioxide: Experimental data and process modelling
    • DOI 10.1016/j.ces.2007.10.008, PII S0009250907007816
    • F. Gironi, and M. Maschietti Continuous countercurrent deterpenation of lemon essential oil by means of supercritical carbon dioxide: experimental data and process modeling Chemical Engineering Science 63 2008 651 661 (Pubitemid 350245491)
    • (2008) Chemical Engineering Science , vol.63 , Issue.3 , pp. 651-661
    • Gironi, F.1    Maschietti, M.2
  • 29
    • 78650238816 scopus 로고    scopus 로고
    • Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box-Behnken experimental design
    • M. Khajeh Optimization of process variables for essential oil components from Satureja hortensis by supercritical fluid extraction using Box-Behnken experimental design J. Supercritical Fluids 55 2011 944 948
    • (2011) J. Supercritical Fluids , vol.55 , pp. 944-948
    • Khajeh, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.