-
1
-
-
84865285730
-
An introduction to the medically important Candida species
-
Calderone R, Clancy CJ (ed), 2nd ed. ASM Press, Washington, DC
-
Moran GP, Coleman D, Sullivan D. 2012. An introduction to the medically important Candida species, p 11-25. In Calderone R, Clancy CJ (ed), Candida and candidiasis, 2nd ed. ASM Press, Washington, DC.
-
(2012)
Candida and Candidiasis
, pp. 11-25
-
-
Moran, G.P.1
Coleman, D.2
Sullivan, D.3
-
2
-
-
33645339901
-
Candidiasis
-
Dismukes WE, Pappas PG, Sobel JD (ed), Oxford University Press, Oxford, United Kingdom
-
Vazquez JA, Sobel JD. 2003. Candidiasis, p 143-187. In Dismukes WE, Pappas PG, Sobel JD (ed), Clinical mycology. Oxford University Press, Oxford, United Kingdom.
-
(2003)
Clinical Mycology.
, pp. 143-187
-
-
Vazquez, J.A.1
Sobel, J.D.2
-
3
-
-
80052965456
-
Growth of Candida albicans hyphae
-
Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9:737-748. http://dx.doi.org/10.1038/nrmicro2636.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 737-748
-
-
Sudbery, P.E.1
-
4
-
-
3042521076
-
The distinct morphotypes of Candida albicans
-
Sudbery PE, Gow N, Sudbery PE. 2004. The distinct morphotypes of Candida albicans. Trends Microbiol. 12:317-324. http://dx.doi.org/10. 1016/j.tim.2004.05.008.
-
(2004)
Trends Microbiol.
, vol.12
, pp. 317-324
-
-
Sudbery, P.E.1
Gow, N.2
Sudbery, P.E.3
-
5
-
-
79955063463
-
Histopathologic diagnosis of fungal infections in the 21st century
-
Guarner J, Brandt ME. 2011. Histopathologic diagnosis of fungal infections in the 21st century. Clin. Microbiol. Rev. 24:247-280. http://dx.doi. org/10.1128/CMR.00053-10.
-
(2011)
Clin. Microbiol. Rev.
, vol.24
, pp. 247-280
-
-
Guarner, J.1
Brandt, M.E.2
-
6
-
-
77954116815
-
Fungal pathogenesis and morphological switches
-
Magee PT. 2010. Fungal pathogenesis and morphological switches. Nat. Genet. 42:560-561. http://dx.doi.org/10.1038/ng0710-560.
-
(2010)
Nat. Genet.
, vol.42
, pp. 560-561
-
-
Magee, P.T.1
-
7
-
-
0030819459
-
Nonfilamentous C. albicans mutants are avirulent
-
Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cucciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939- 949. http://dx.doi.org/10.1016/S0092-8674(00)80358-X.
-
(1997)
Cell
, vol.90
, pp. 939-949
-
-
Lo, H.J.1
Kohler, J.R.2
DiDomenico, B.3
Loebenberg, D.4
Cucciapuoti, A.5
Fink, G.R.6
-
8
-
-
0033828719
-
Identification and characterization of TUP1-regulated genes in Candida albicans
-
Braun BR, Head WS, Wang MX, Johnson AD. 2000. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156:31-44.
-
(2000)
Genetics
, vol.156
, pp. 31-44
-
-
Braun, B.R.1
Head, W.S.2
Wang, M.X.3
Johnson, A.D.4
-
9
-
-
0031052529
-
Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase
-
Sarthy AN, McGonigal T, Coen M, Frost DJ, Meulbroek JA, Goldman RC. 1997. Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase. Microbiology 143:367-376. http: //dx.doi.org/10.1099/00221287-143-2-367.
-
(1997)
Microbiology
, vol.143
, pp. 367-376
-
-
Sarthy, A.N.1
McGonigal, T.2
Coen, M.3
Frost, D.J.4
Meulbroek, J.A.5
Goldman, R.C.6
-
10
-
-
0035811478
-
The glyoxylate cycle is required for fungal virulence
-
Lorenz MC, Fink GR. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412:83-86. http://dx.doi.org/10.1038/35083594.
-
(2001)
Nature
, vol.412
, pp. 83-86
-
-
Lorenz, M.C.1
Fink, G.R.2
-
11
-
-
84855872990
-
Candida albicans morphogenesis and host defense: Discriminating invasion from colonization
-
Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG. 2012. Candida albicans morphogenesis and host defense: discriminating invasion from colonization. Nat. Rev. Microbiol. 10:112-122. http://dx.doi.org/10.1038 /nrmicro2711.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 112-122
-
-
Gow, N.A.R.1
van de Veerdonk, F.L.2
Brown, A.J.P.3
Netea, M.G.4
-
12
-
-
77954095162
-
Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
-
Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet. 42:590-598. http: //dx.doi.org/10.1038/ng.605.
-
(2010)
Nat. Genet.
, vol.42
, pp. 590-598
-
-
Noble, S.M.1
French, S.2
Kohn, L.A.3
Chen, V.4
Johnson, A.D.5
-
13
-
-
0142216110
-
Engineered control of cell morphology in vivo reveals distinct role for yeast and filamentous forms of Candida albicans during infection
-
Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. 2003. Engineered control of cell morphology in vivo reveals distinct role for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2:1053-1060. http://dx.doi.org/10.1128/EC.2.5.1053-1060.2003.
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 1053-1060
-
-
Saville, S.P.1
Lazzell, A.L.2
Monteagudo, C.3
Lopez-Ribot, J.L.4
-
14
-
-
79955613269
-
A largescalecomplexhaploinsufficiency- based genetic interaction screen inCandida albicans: Analysis of the RAM Network during morphogenesis
-
Bharucha N, Chabrier-Roselló Y, Xu T, Johnson C, Sobcynski S, Song SQ, Dobry CJ, Anderson CP, Benjamin AJ, Kumar A, Krysan DJ. 2011. A largescalecomplexhaploinsufficiency- based genetic interaction screen inCandida albicans: analysis of the RAM Network during morphogenesis. PLoS Genet. 7:e1002058. http://dx.doi.org/10.1371/journal.pgen.1002058.
-
(2011)
PLoS Genet.
, vol.7
-
-
Bharucha, N.1
Chabrier-Roselló, Y.2
Xu, T.3
Johnson, C.4
Sobcynski, S.5
Song, S.Q.6
Dobry, C.J.7
Anderson, C.P.8
Benjamin, A.J.9
Kumar, A.10
Krysan, D.J.11
-
15
-
-
77955631555
-
Sequential counteracting kinases restrict an asymmetric gene expression program to early G1
-
Mazanka E, Weiss EL. 2010. Sequential counteracting kinases restrict an asymmetric gene expression program to early G1. Mol. Biol. Cell 21:2809- 2820. http://dx.doi.org/10.1091/mbc.E10-02-0174.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2809-2820
-
-
Mazanka, E.1
Weiss, E.L.2
-
16
-
-
31544444134
-
A role for the Saccharomyces cerevisiae regulation of Ace2 and polarized morphogenesis signaling network in cell integrity
-
Kurischko C, Weiss G, Ottey M, Luca FC. 2005. A role for the Saccharomyces cerevisiae regulation of Ace2 and polarized morphogenesis signaling network in cell integrity. Genetics 171:443-455. http://dx.doi.org/10. 1534/genetics.105.042101.
-
(2005)
Genetics
, vol.171
, pp. 443-455
-
-
Kurischko, C.1
Weiss, G.2
Ottey, M.3
Luca, F.C.4
-
17
-
-
84870657484
-
Mitotic exit and separation of mother and daughter cells
-
Weiss EL. 2012. Mitotic exit and separation of mother and daughter cells. Genetics 192:1165-1202. http://dx.doi.org/10.1534/genetics.112.145516.
-
(2012)
Genetics
, vol.192
, pp. 1165-1202
-
-
Weiss, E.L.1
-
18
-
-
45549097846
-
Regulation of the yeast Ace2 transcription factor during the cell cycle
-
Sbia M, Parnell EJ, Yu Y, Olsen AE, Kretschmann KL, Voth WP, Stillman DJ. 2008. Regulation of the yeast Ace2 transcription factor during the cell cycle. J. Biol. Chem. 283:11135-11145. http://dx.doi.org/10. 1074/jbc.M800196200.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 11135-11145
-
-
Sbia, M.1
Parnell, E.J.2
Yu, Y.3
Olsen, A.E.4
Kretschmann, K.L.5
Voth, W.P.6
Stillman, D.J.7
-
19
-
-
3843133108
-
The Candida albicans CaACE2 gene affects morphogenesis, adherence, and virulence
-
Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJP, Butler G. 2004. The Candida albicans CaACE2 gene affects morphogenesis, adherence, and virulence. Mol. Microbiol. 53:969-983. http://dx.doi.org/10. 1111/j.1365-2958.2004.04185.x.
-
(2004)
Mol. Microbiol.
, vol.53
, pp. 969-983
-
-
Kelly, M.T.1
McCallum, D.M.2
Clancy, S.D.3
Odds, F.C.4
Brown, A.J.P.5
Butler, G.6
-
20
-
-
0036203303
-
Conserved serine and threonine kinase encoded byCBK1regulates expression of several hypha-associated transcripts and genes encoding cell wall proteins in Candida albicans
-
McNemar MD, Fonzi WA. 2002. Conserved serine and threonine kinase encoded byCBK1regulates expression of several hypha-associated transcripts and genes encoding cell wall proteins in Candida albicans. J. Bacteriol. 184: 2058-2061. http://dx.doi.org/10.1128/JB.184.7.2058-2061.2002.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 2058-2061
-
-
McNemar, M.D.1
Fonzi, W.A.2
-
21
-
-
59449105152
-
Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans
-
Song Y, Cheon SA, Lee KE, Lee S-Y, Lee B-K, Oh D-B, Kang HA, Kim J-Y. 2008. Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans. Mol. Biol. Cell 19:5456-5477. http://dx.doi. org/10.1091/mbc.E08-03-0272.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 5456-5477
-
-
Song, Y.1
Cheon, S.A.2
Lee, K.E.3
Lee, S.-Y.4
Lee, B.-K.5
Oh, D.-B.6
Kang, H.A.7
Kim, J.-Y.8
-
22
-
-
33845659996
-
Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions
-
Mulhern SM, Logue ME, Butler G. 2006. Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryot. Cell 5:2001-2013. http://dx.doi.org/10.1128 /EC.00155-06.
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 2001-2013
-
-
Mulhern, S.M.1
Logue, M.E.2
Butler, G.3
-
23
-
-
0030945488
-
Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH protein regulating morphogenetic processes in fungi
-
Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH protein regulating morphogenetic processes in fungi. EMBO J. 16:1982-1991. http://dx.doi.org/10.1093 /emboj/16.8.1982.
-
(1997)
EMBO J.
, vol.16
, pp. 1982-1991
-
-
Stoldt, V.R.1
Sonneborn, A.2
Leuker, C.E.3
Ernst, J.F.4
-
24
-
-
3042765834
-
APES proteins regulate morphogenesis and metabolism in Candida albicans
-
Doedt T, Krishnamurthy S, Bockmühl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF. 2004. APES proteins regulate morphogenesis and metabolism in Candida albicans. Mol. Biol. Cell 15:3167- 3180. http://dx.doi.org/10.1091/mbc.E03-11-0782.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 3167-3180
-
-
Doedt, T.1
Krishnamurthy, S.2
Bockmühl, D.P.3
Tebarth, B.4
Stempel, C.5
Russell, C.L.6
Brown, A.J.7
Ernst, J.F.8
-
25
-
-
1242322494
-
The ras/protein kinaseApathway acts in parallel with the Mob2/Cbk1 pathway to effect cell cycle progression and proper bud site selection
-
Schneper L, Krauss A, Miyamoto R, Fang S, Broach JR. 2004. The ras/protein kinaseApathway acts in parallel with the Mob2/Cbk1 pathway to effect cell cycle progression and proper bud site selection. Eukaryot. Cell 3:108-120. http://dx.doi.org/10.1128/EC.3.1.108-120.2004.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 108-120
-
-
Schneper, L.1
Krauss, A.2
Miyamoto, R.3
Fang, S.4
Broach, J.R.5
-
26
-
-
68949158410
-
Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes
-
Wang A, Raniga PP, Lane S, Lu Y, Liu H. 2009. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Mol. Cell. Biol. 29:4406-4416. http://dx.doi.org/10. 1128/MCB.01502-08.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4406-4416
-
-
Wang, A.1
Raniga, P.P.2
Lane, S.3
Lu, Y.4
Liu, H.5
-
27
-
-
79960300024
-
CDKdependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans
-
Gutierrez-Escribano P, Gonzalez-Novo A, Belen Suarez M, Li C-R, Wang Y, Vazquez de Aldana CR, Correa-Bordes J. 2011. CDKdependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans. Mol. Biol. Cell 22:2458-2469. http://dx.doi.org/10. 1091/mbc.E11-03-0205.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2458-2469
-
-
Gutierrez-Escribano, P.1
Gonzalez-Novo, A.2
Belen Suarez, M.3
Li, C.-R.4
Wang, Y.5
de Aldana Vazquez, C.R.6
Correa-Bordes, J.7
-
29
-
-
84874617652
-
Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines
-
Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA. 2013. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio 4:e00526 -12. http://dx.doi. org/10.1128/mBio.00526-12.
-
(2013)
mBio
, vol.4
, pp. e00526-e00612
-
-
Morales, D.K.1
Grahl, N.2
Okegbe, C.3
Dietrich, L.E.4
Jacobs, N.J.5
Hogan, D.A.6
-
30
-
-
44949231424
-
Analyzing real-time PCR data by the comparative CT method
-
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3:1101-1108. http://dx.doi.org/10. 1038/nprot.2008.73.
-
(2008)
Nat. Protoc.
, vol.3
, pp. 1101-1108
-
-
Schmittgen, T.D.1
Livak, K.J.2
-
32
-
-
84865790513
-
Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations
-
Pierce JV, Kumamoto CA. 2012. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. mBio 3:e00117-12. http://dx.doi.org/10.1128/mBio.00117-12.
-
(2012)
mBio
, vol.3
, pp. e00117-e00212
-
-
Pierce, J.V.1
Kumamoto, C.A.2
-
33
-
-
0038206537
-
Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKAdependent repression of the EFG1 gene
-
Tebarth B, Doedt T, Krishnamurthy S, Weide M, Monterola F, Domingues A, Ernst JF. 2003. Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKAdependent repression of the EFG1 gene. J. Mol. Biol. 329:949-962. http: //dx.doi.org/10.1016/S0022-2836(03)00505-9.
-
(2003)
J. Mol. Biol.
, vol.329
, pp. 949-962
-
-
Tebarth, B.1
Doedt, T.2
Krishnamurthy, S.3
Weide, M.4
Monterola, F.5
Domingues, A.6
Ernst, J.F.7
-
34
-
-
80054833808
-
Target specificity of the Candida albicans Efg1 regulator
-
Lassak T, Schneider E, Bussmann M, Kurtz D, Manak JR, Srkantha T, Soll DR, Ernst JF. 2011. Target specificity of the Candida albicans Efg1 regulator. Mol. Microbiol. 82:602-618. http://dx.doi.org/10.1111/j.1365 -2958.2011.07837.x.
-
(2011)
Mol. Microbiol.
, vol.82
, pp. 602-618
-
-
Lassak, T.1
Schneider, E.2
Bussmann, M.3
Kurtz, D.4
Manak, J.R.5
Srkantha, T.6
Soll, D.R.7
Ernst, J.F.8
-
35
-
-
0035053398
-
A potential phosphorylation site for an A-kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans
-
Bockmuhl DP, Ernst JF. 2001. A potential phosphorylation site for an A-kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157:1523-1530.
-
(2001)
Genetics
, vol.157
, pp. 1523-1530
-
-
Bockmuhl, D.P.1
Ernst, J.F.2
-
36
-
-
61449094788
-
The protein kinase Tor1 regulates adhesin gene expression in Candida albicans
-
Bastidas RJ, Heitman J, Cardenas ME. 2009. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 5:e1000294. http://dx.doi.org/10.1371/journal.ppat.1000294.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Bastidas, R.J.1
Heitman, J.2
Cardenas, M.E.3
-
37
-
-
84872007065
-
A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis
-
Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W, Schöck U, Stark A, Kuchler K. 2012. A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet. 8:e1003118. http://dx.doi.org/10.1371/journal.pgen.1003118.
-
(2012)
PLoS Genet.
, vol.8
-
-
Hnisz, D.1
Bardet, A.F.2
Nobile, C.J.3
Petryshyn, A.4
Glaser, W.5
Schöck, U.6
Stark, A.7
Kuchler, K.8
-
38
-
-
84856117019
-
A recently evolved transcriptional network controls biofilm development in Candida albicans
-
Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126-138. http://dx.doi.org/10.1016/j.cell.2011.10.048.
-
(2012)
Cell
, vol.148
, pp. 126-138
-
-
Nobile, C.J.1
Fox, E.P.2
Nett, J.E.3
Sorrells, T.R.4
Mitrovich, Q.M.5
Hernday, A.D.6
Tuch, B.B.7
Andes, D.R.8
Johnson, A.D.9
-
39
-
-
84860893931
-
Portrait of Candida albicans adherence regulators
-
Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP. 2012. Portrait of Candida albicans adherence regulators. PLoS Pathog. 8:e1002525. http: //dx.doi.org/10.1371/journal.ppat.1002525.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Finkel, J.S.1
Xu, W.2
Huang, D.3
Hill, E.M.4
Desai, J.V.5
Woolford, C.A.6
Nett, J.E.7
Taff, H.8
Norice, C.T.9
Andes, D.R.10
Lanni, F.11
Mitchell, A.P.12
-
40
-
-
0036240684
-
Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression
-
Giusani AD, Vinces M, Kumamoto CA. 2002. Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160:1749-1753.
-
(2002)
Genetics
, vol.160
, pp. 1749-1753
-
-
Giusani, A.D.1
Vinces, M.2
Kumamoto, C.A.3
-
41
-
-
65649085555
-
Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans
-
Sellam A, Askew C, Epp E, Lavoie H, Whiteway M, Nantel A. 2009. Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Mol. Biol. Cell 20:2389-2400. http://dx.doi.org/10.1091/mbc.E08-11-1093.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 2389-2400
-
-
Sellam, A.1
Askew, C.2
Epp, E.3
Lavoie, H.4
Whiteway, M.5
Nantel, A.6
-
42
-
-
0033710445
-
The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans
-
Schweizer A, Rupp S, Taylor BN, Röllinghoff M, Schröppel K. 2000. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 38:435-445. http://dx. doi.org/10.1046/j.1365-2958.2000.02132.x.
-
(2000)
Mol. Microbiol.
, vol.38
, pp. 435-445
-
-
Schweizer, A.1
Rupp, S.2
Taylor, B.N.3
Röllinghoff, M.4
Schröppel, K.5
-
43
-
-
84861205961
-
A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans
-
Lu Y, Su C, Liu H. 2012. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog. 8:e1002663. http://dx.doi.org/10.1371 /journal.ppat.1002663.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Lu, Y.1
Su, C.2
Liu, H.3
-
44
-
-
0035966045
-
DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans
-
Lane S, Birse C, Zhou S, Matson R, Liu H. 2001. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 276:48988-48996. http://dx. doi.org/10.1074/jbc.M104484200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 48988-48996
-
-
Lane, S.1
Birse, C.2
Zhou, S.3
Matson, R.4
Liu, H.5
-
45
-
-
84861696976
-
The RAM network in pathogenic fungi
-
Saputo S, Chabrier-Rosello Y, Luca FC, Kumar A, Krysan DJ. 2012. The RAM network in pathogenic fungi. Eukaryot. Cell 11:708-717. http://dx. doi.org/10.1128/EC.00044-12.
-
(2012)
Eukaryot. Cell
, vol.11
, pp. 708-717
-
-
Saputo, S.1
Chabrier-Rosello, Y.2
Luca, F.C.3
Kumar, A.4
Krysan, D.J.5
-
46
-
-
84867184973
-
Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans
-
Lindsay AK, Deveau A, Piispanen AE, Hogan DA. 2012. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryot. Cell 11:1219-1225. http://dx.doi.org/10.1128/EC. 00144-12.
-
(2012)
Eukaryot. Cell
, vol.11
, pp. 1219-1225
-
-
Lindsay, A.K.1
Deveau, A.2
Piispanen, A.E.3
Hogan, D.A.4
|