-
1
-
-
34547535389
-
Sampling approaches to learning from imbalanced datasets: Active learning, cost senstive learning and beyond, 2003
-
N. Abe. Sampling approaches to learning from imbalanced datasets: Active learning, cost senstive learning and beyond, 2003. Proc. ICML, Workshop Learning from Imbalanced Data Sets II.
-
Proc. ICML, Workshop Learning from Imbalanced Data Sets II
-
-
Abe, N.1
-
2
-
-
84907022773
-
-
J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, and S. Garcia. Keel data-mining sofware tool: Data set repository, integration of algorithms and experimental analysis framework. 2011. http://sci2s.urg.es/keel/imbalanced. php#sub3.
-
(2011)
Keel Data-mining Sofware Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework
-
-
Alcala-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
Garcia, S.5
-
5
-
-
68549121111
-
C4.5 and imbalanced data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure
-
N. V. Chawla. C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In In Proceedings of the ICMLo03 Workshop on Class Imbalances, 2003.
-
In Proceedings of the ICMLo03 Workshop on Class Imbalances, 2003
-
-
Chawla, N.V.1
-
6
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
7
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
June
-
N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl., 6(1):1-6, June 2004.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
8
-
-
84856621489
-
Hellinger distance decision trees are robust and skew-insensitive
-
D. Cieslak, T. Hoens, N. Chawla, and W. Kegelmeyer. Hellinger distance decision trees are robust and skew-insensitive. Data Mining and Knowledge Discovery, 24(1):136-158, 2012.
-
(2012)
Data Mining and Knowledge Discovery
, vol.24
, Issue.1
, pp. 136-158
-
-
Cieslak, D.1
Hoens, T.2
Chawla, N.3
Kegelmeyer, W.4
-
9
-
-
0007425929
-
Bump hunting in high-dimensional data
-
J. Friedman and N. Fisher. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123-143, 1999.
-
(1999)
Statistics and Computing
, vol.9
, Issue.2
, pp. 123-143
-
-
Friedman, J.1
Fisher, N.2
-
10
-
-
84907023893
-
-
S. T. Goh and C. Rudin. 2014. http: //web.mit.edu/stgoh/www/ imbalanceddatafolder/.
-
(2014)
-
-
Goh, S.T.1
Rudin, C.2
-
12
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
R. C. Holte. Very simple classification rules perform well on most commonly used datasets. In Machine Learning, pages 63-91, 1993.
-
(1993)
Machine Learning
, pp. 63-91
-
-
Holte, R.C.1
-
15
-
-
77953586736
-
Does cost-sensitive learning beat sampling for classifying rare classes?
-
New York, NY, USA, ACM
-
K. McCarthy, B. Zabar, and G. Weiss. Does cost-sensitive learning beat sampling for classifying rare classes? In Proceedings of the 1st International Workshop on Utility-based Data Mining, UBDM '05, pages 69-77, New York, NY, USA, 2005. ACM.
-
(2005)
Proceedings of the 1st International Workshop on Utility-based Data Mining, UBDM '05
, pp. 69-77
-
-
McCarthy, K.1
Zabar, B.2
Weiss, G.3
-
16
-
-
9444270977
-
Class imbalances versus class overlapping: An analysis of a learning system behavior
-
R. Monroy, G. Arroyo-Figueroa, L. Sucar, and H. Sossa, editors, MICAI 2004: Advances in Artificial Intelligence, of Springer Berlin Heidelberg
-
R. Prati, G. Batista, and M. Monard. Class imbalances versus class overlapping: An analysis of a learning system behavior. In R. Monroy, G. Arroyo-Figueroa, L. Sucar, and H. Sossa, editors, MICAI 2004: Advances in Artificial Intelligence, volume 2972 of Lecture Notes in Computer Science, pages 312-321. Springer Berlin Heidelberg, 2004.
-
(2004)
Lecture Notes in Computer Science
, vol.2972
, pp. 312-321
-
-
Prati, R.1
Batista, G.2
Monard, M.3
-
18
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42(3):203-231, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
20
-
-
32344438970
-
Extreme re-balancing for svms: A case study
-
June
-
B. Raskutti and A. Kowalczyk. Extreme re-balancing for svms: A case study. SIGKDD Explor. Newsl., 6(1):60-69, June 2004.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 60-69
-
-
Raskutti, B.1
Kowalczyk, A.2
-
22
-
-
20844458491
-
Mining with rarity: A unifying framework
-
June
-
G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explor. Newsl., 6(1):7-19, June 2004.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
-
24
-
-
37549018049
-
Top 10 algorithms in data mining
-
X. Wu, V. Kumar, Ross, J. Ghosh, and et al. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1-37, 2008.
-
(2008)
Knowledge and Information Systems
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ghosh, R.J.3
|