메뉴 건너뛰기




Volumn 22, Issue 9, 2014, Pages 490-497

Through the looking glass: Witnessing host-virus interplay in zebrafish

Author keywords

In vivo imaging; Innate immunity; Tolerance; Virus tropism; Zebrafish

Indexed keywords

FISH MODEL; IMMUNE RESPONSE; IMMUNOLOGICAL TOLERANCE; INFECTION RESISTANCE; INNATE IMMUNITY; NONHUMAN; PRIORITY JOURNAL; REVIEW; VIRAL TROPISM; VIRUS CELL INTERACTION; VIRUS INFECTION; VIRUS REPLICATION; VIRUS TRANSMISSION; ZEBRA FISH; ANIMAL; DISEASE MODEL; DISEASE RESISTANCE; GENETICS; GROWTH, DEVELOPMENT AND AGING; HOST PATHOGEN INTERACTION; IMMUNOLOGY; PATHOLOGY; VIROLOGY;

EID: 84906940300     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2014.04.014     Document Type: Review
Times cited : (39)

References (55)
  • 1
    • 84857464509 scopus 로고    scopus 로고
    • Zebrafish: a see-through host and a fluorescent toolbox to probe host-pathogen interaction
    • Tobin D.M., et al. Zebrafish: a see-through host and a fluorescent toolbox to probe host-pathogen interaction. PLoS Pathog. 2012, 8:e1002349.
    • (2012) PLoS Pathog. , vol.8
    • Tobin, D.M.1
  • 2
    • 84884690124 scopus 로고    scopus 로고
    • Real-time whole-body visualization of Chikungunya virus infection and host interferon response in zebrafish
    • Palha N., et al. Real-time whole-body visualization of Chikungunya virus infection and host interferon response in zebrafish. PLoS Pathog. 2013, 9:e1003619.
    • (2013) PLoS Pathog. , vol.9
    • Palha, N.1
  • 3
    • 79952214301 scopus 로고    scopus 로고
    • Whole-body analysis of a viral infection: vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae
    • Ludwig M., et al. Whole-body analysis of a viral infection: vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae. PLoS Pathog. 2011, 7:e1001269.
    • (2011) PLoS Pathog. , vol.7
    • Ludwig, M.1
  • 4
    • 0041694469 scopus 로고    scopus 로고
    • Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study
    • Lam S.H., et al. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 2004, 28:9-28.
    • (2004) Dev. Comp. Immunol. , vol.28 , pp. 9-28
    • Lam, S.H.1
  • 5
    • 84855870166 scopus 로고    scopus 로고
    • A model 450 million years in the making: zebrafish and vertebrate immunity
    • Renshaw S.A., Trede N.S. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis. Model Mech. 2012, 5:38-47.
    • (2012) Dis. Model Mech. , vol.5 , pp. 38-47
    • Renshaw, S.A.1    Trede, N.S.2
  • 6
    • 84887992036 scopus 로고    scopus 로고
    • The antiviral innate immune response in fish: evolution and conservation of the IFN system
    • Langevin C., et al. The antiviral innate immune response in fish: evolution and conservation of the IFN system. J. Mol. Biol. 2013, 425:4904-4920.
    • (2013) J. Mol. Biol. , vol.425 , pp. 4904-4920
    • Langevin, C.1
  • 7
    • 84876798186 scopus 로고    scopus 로고
    • The zebrafish reference genome sequence and its relationship to the human genome
    • Howe K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496:498-503.
    • (2013) Nature , vol.496 , pp. 498-503
    • Howe, K.1
  • 8
    • 78650921882 scopus 로고    scopus 로고
    • Screening: the age of fishes
    • Baker M. Screening: the age of fishes. Nat. Methods 2011, 8:47-51.
    • (2011) Nat. Methods , vol.8 , pp. 47-51
    • Baker, M.1
  • 9
    • 82155191986 scopus 로고    scopus 로고
    • Viruses of fish: an overview of significant pathogens
    • Crane M., Hyatt A. Viruses of fish: an overview of significant pathogens. Viruses 2011, 3:2025-2046.
    • (2011) Viruses , vol.3 , pp. 2025-2046
    • Crane, M.1    Hyatt, A.2
  • 10
    • 84873434977 scopus 로고    scopus 로고
    • Viral diseases in zebrafish: what is known and unknown
    • Crim M.J., Riley L.K. Viral diseases in zebrafish: what is known and unknown. ILAR J. 2012, 53:135-143.
    • (2012) ILAR J. , vol.53 , pp. 135-143
    • Crim, M.J.1    Riley, L.K.2
  • 11
    • 84892925982 scopus 로고    scopus 로고
    • Zebrafish: modeling for herpes simplex virus infections
    • Antoine T.E., et al. Zebrafish: modeling for herpes simplex virus infections. Zebrafish 2014, 11:17-25.
    • (2014) Zebrafish , vol.11 , pp. 17-25
    • Antoine, T.E.1
  • 12
    • 13744250484 scopus 로고    scopus 로고
    • Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio)
    • Phelan P.E., et al. Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio). J. Virol. 2005, 79:1842-1852.
    • (2005) J. Virol. , vol.79 , pp. 1842-1852
    • Phelan, P.E.1
  • 13
    • 0242721817 scopus 로고    scopus 로고
    • Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus
    • Sanders G.E., et al. Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp. Med. 2003, 53:514-521.
    • (2003) Comp. Med. , vol.53 , pp. 514-521
    • Sanders, G.E.1
  • 14
    • 65449183748 scopus 로고    scopus 로고
    • New insights into the evolution of IFNs: activities genes and display powerful antiviral transient expression of IFN-dependent zebrafish group II IFNs induce a rapid and display powerful antiviral activities
    • Lopez-Munoz A., et al. New insights into the evolution of IFNs: activities genes and display powerful antiviral transient expression of IFN-dependent zebrafish group II IFNs induce a rapid and display powerful antiviral activities. J. Immunol. 2009, 182:3440-3449.
    • (2009) J. Immunol. , vol.182 , pp. 3440-3449
    • Lopez-Munoz, A.1
  • 15
    • 77649339093 scopus 로고    scopus 로고
    • Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus
    • López-Muñoz A., et al. Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus. Dev. Comp. Immunol. 2010, 34:546-552.
    • (2010) Dev. Comp. Immunol. , vol.34 , pp. 546-552
    • López-Muñoz, A.1
  • 16
    • 33947692887 scopus 로고    scopus 로고
    • Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system
    • Levraud J-P., et al. Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system. J. Immunol. 2007, 178:4385-4394.
    • (2007) J. Immunol. , vol.178 , pp. 4385-4394
    • Levraud, J.-P.1
  • 17
    • 70349329998 scopus 로고    scopus 로고
    • The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains
    • Aggad D., et al. The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains. J. Immunol. 2009, 183:3924-3931.
    • (2009) J. Immunol. , vol.183 , pp. 3924-3931
    • Aggad, D.1
  • 18
    • 84884175036 scopus 로고    scopus 로고
    • Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug candidates
    • Encinas P., et al. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug candidates. PLoS ONE 2013, 8:e73553.
    • (2013) PLoS ONE , vol.8
    • Encinas, P.1
  • 19
    • 84899573699 scopus 로고    scopus 로고
    • Contrasted innate responses to two viruses in zebrafish: insights into the ancestral repertoire of vertebrate IFN-stimulated genes
    • Briolat V., et al. Contrasted innate responses to two viruses in zebrafish: insights into the ancestral repertoire of vertebrate IFN-stimulated genes. J. Immunol. 2014, 192:4328-4341.
    • (2014) J. Immunol. , vol.192 , pp. 4328-4341
    • Briolat, V.1
  • 20
    • 77956929655 scopus 로고    scopus 로고
    • Characteristics of the interferon regulatory factor pairs zfIRF5/7 and their stimulation expression by ISKNV Infection in zebrafish (Danio rerio)
    • Xiang Z., et al. Characteristics of the interferon regulatory factor pairs zfIRF5/7 and their stimulation expression by ISKNV Infection in zebrafish (Danio rerio). Dev. Comp. Immunol. 2010, 34:1263-1273.
    • (2010) Dev. Comp. Immunol. , vol.34 , pp. 1263-1273
    • Xiang, Z.1
  • 21
    • 84883269034 scopus 로고    scopus 로고
    • Zebrafish ISG15 exerts a strong anti-viral activity against RNA and DNA viruses and regulates the interferon response
    • Langevin C., et al. Zebrafish ISG15 exerts a strong anti-viral activity against RNA and DNA viruses and regulates the interferon response. J. Virol. 2013, 87:10025-10036.
    • (2013) J. Virol. , vol.87 , pp. 10025-10036
    • Langevin, C.1
  • 22
    • 84863269913 scopus 로고    scopus 로고
    • Identification of DreI as an antiviral factor regulated by RLR signaling pathway
    • Li S., et al. Identification of DreI as an antiviral factor regulated by RLR signaling pathway. PLoS ONE 2012, 7:e32427.
    • (2012) PLoS ONE , vol.7
    • Li, S.1
  • 23
    • 79961174974 scopus 로고    scopus 로고
    • Zebrafish as a potential model organism for drug test against hepatitis C virus
    • Ding C.B., et al. Zebrafish as a potential model organism for drug test against hepatitis C virus. PLoS ONE 2011, 6:e22921.
    • (2011) PLoS ONE , vol.6
    • Ding, C.B.1
  • 24
    • 84863637923 scopus 로고    scopus 로고
    • Genomic amplification of an endogenous retrovirus in zebrafish T-cell malignancies
    • Frazer J.K., et al. Genomic amplification of an endogenous retrovirus in zebrafish T-cell malignancies. Adv. Hematol. 2012, 2012:627920.
    • (2012) Adv. Hematol. , vol.2012 , pp. 627920
    • Frazer, J.K.1
  • 25
    • 0347949569 scopus 로고    scopus 로고
    • Genome structure and thymic expression of an endogenous retrovirus in zebrafish
    • Shen C.H., Steiner L.A. Genome structure and thymic expression of an endogenous retrovirus in zebrafish. J. Virol. 2004, 78:899-911.
    • (2004) J. Virol. , vol.78 , pp. 899-911
    • Shen, C.H.1    Steiner, L.A.2
  • 26
    • 84874648730 scopus 로고    scopus 로고
    • Cell-to-cell transmission of viruses
    • Zhong P., et al. Cell-to-cell transmission of viruses. Curr. Opin. Virol. 2013, 3:44-50.
    • (2013) Curr. Opin. Virol. , vol.3 , pp. 44-50
    • Zhong, P.1
  • 27
    • 0037405245 scopus 로고    scopus 로고
    • Luciferase imaging of a neurotropic viral infection in intact animals
    • Cook S.H., Griffin D.E. Luciferase imaging of a neurotropic viral infection in intact animals. J. Virol. 2003, 77:5333-5338.
    • (2003) J. Virol. , vol.77 , pp. 5333-5338
    • Cook, S.H.1    Griffin, D.E.2
  • 28
    • 33645234690 scopus 로고    scopus 로고
    • Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus
    • Harmache A., et al. Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J. Virol. 2006, 80:3655-3659.
    • (2006) J. Virol. , vol.80 , pp. 3655-3659
    • Harmache, A.1
  • 29
    • 84888024522 scopus 로고    scopus 로고
    • Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread
    • Tran V., et al. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J. Virol. 2013, 87:13321-13329.
    • (2013) J. Virol. , vol.87 , pp. 13321-13329
    • Tran, V.1
  • 30
    • 84889566516 scopus 로고    scopus 로고
    • Use of in vivo imaging to monitor the progression of experimental mouse cytomegalovirus infection in neonates
    • Ostermann E., et al. Use of in vivo imaging to monitor the progression of experimental mouse cytomegalovirus infection in neonates. J. Vis. Exp. 2013, 10.3791/50409.
    • (2013) J. Vis. Exp.
    • Ostermann, E.1
  • 31
    • 23844446042 scopus 로고    scopus 로고
    • Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system
    • Ch'ng T.H., Enquist L.W. Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system. J. Virol. 2005, 79:10875-10889.
    • (2005) J. Virol. , vol.79 , pp. 10875-10889
    • Ch'ng, T.H.1    Enquist, L.W.2
  • 32
    • 73949125038 scopus 로고    scopus 로고
    • Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis
    • Antinone S.E., Smith G.A. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J. Virol. 2010, 84:1504-1512.
    • (2010) J. Virol. , vol.84 , pp. 1504-1512
    • Antinone, S.E.1    Smith, G.A.2
  • 33
    • 84871770842 scopus 로고    scopus 로고
    • In vivo imaging of virological synapses
    • Sewald X., et al. In vivo imaging of virological synapses. Nat. Commun. 2012, 3:1320.
    • (2012) Nat. Commun. , vol.3 , pp. 1320
    • Sewald, X.1
  • 34
    • 84867329009 scopus 로고    scopus 로고
    • HIV-infected T cells are migratory vehicles for viral dissemination
    • Murooka T.T., et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature 2012, 490:283-287.
    • (2012) Nature , vol.490 , pp. 283-287
    • Murooka, T.T.1
  • 35
    • 84873918511 scopus 로고    scopus 로고
    • Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin
    • Hickman H.D., et al. Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin. Cell Host Microbe 2013, 13:155-168.
    • (2013) Cell Host Microbe , vol.13 , pp. 155-168
    • Hickman, H.D.1
  • 36
    • 84883794456 scopus 로고    scopus 로고
    • In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins
    • Granstedt A.E., et al. In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E3516-E3525.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • Granstedt, A.E.1
  • 37
    • 33847131016 scopus 로고    scopus 로고
    • Virus trafficking - learning from single-virus tracking
    • Brandenburg B., Zhuang X. Virus trafficking - learning from single-virus tracking. Nat. Rev. Microbiol. 2007, 5:197-208.
    • (2007) Nat. Rev. Microbiol. , vol.5 , pp. 197-208
    • Brandenburg, B.1    Zhuang, X.2
  • 38
    • 38449094810 scopus 로고    scopus 로고
    • Disentangling genetic variation for resistance and tolerance to infectious diseases in animals
    • Råberg L., et al. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 2007, 318:812-814.
    • (2007) Science , vol.318 , pp. 812-814
    • Råberg, L.1
  • 39
    • 84857538593 scopus 로고    scopus 로고
    • Disease tolerance as a defense strategy
    • Medzhitov R., et al. Disease tolerance as a defense strategy. Science 2012, 335:936-941.
    • (2012) Science , vol.335 , pp. 936-941
    • Medzhitov, R.1
  • 40
    • 70949095044 scopus 로고    scopus 로고
    • Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish
    • Parichy D.M., et al. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev. Dyn. 2009, 238:2975-3015.
    • (2009) Dev. Dyn. , vol.238 , pp. 2975-3015
    • Parichy, D.M.1
  • 41
    • 0036784577 scopus 로고    scopus 로고
    • A zebrafish coxsackievirus and adenovirus receptor homologue interacts with coxsackie B virus and adenovirus
    • Petrella J., et al. A zebrafish coxsackievirus and adenovirus receptor homologue interacts with coxsackie B virus and adenovirus. J. Virol. 2002, 76:10503-10506.
    • (2002) J. Virol. , vol.76 , pp. 10503-10506
    • Petrella, J.1
  • 42
    • 77249101479 scopus 로고    scopus 로고
    • Host-microbe interactions in the developing zebrafish
    • Kanther M., Rawls J.F. Host-microbe interactions in the developing zebrafish. Curr. Opin. Immunol. 2010, 22:10-19.
    • (2010) Curr. Opin. Immunol. , vol.22 , pp. 10-19
    • Kanther, M.1    Rawls, J.F.2
  • 43
    • 84875591830 scopus 로고    scopus 로고
    • Antiviral activity of phosvitin from zebrafish Danio rerio
    • Sun C., et al. Antiviral activity of phosvitin from zebrafish Danio rerio. Dev. Comp. Immunol. 2013, 40:28-34.
    • (2013) Dev. Comp. Immunol. , vol.40 , pp. 28-34
    • Sun, C.1
  • 44
    • 84872022198 scopus 로고    scopus 로고
    • The viral TRAF protein (ORF111L) from infectious spleen and kidney necrosis virus interacts with TRADD and induces caspase 8-mediated apoptosis
    • He B-L., et al. The viral TRAF protein (ORF111L) from infectious spleen and kidney necrosis virus interacts with TRADD and induces caspase 8-mediated apoptosis. PLoS ONE 2012, 7:e37001.
    • (2012) PLoS ONE , vol.7
    • He, B.-L.1
  • 45
    • 79951950457 scopus 로고    scopus 로고
    • Proteomic analysis of zebrafish (Danio rerio) infected with infectious spleen and kidney necrosis virus
    • Xiong X-P., et al. Proteomic analysis of zebrafish (Danio rerio) infected with infectious spleen and kidney necrosis virus. Dev. Comp. Immunol. 2011, 35:431-440.
    • (2011) Dev. Comp. Immunol. , vol.35 , pp. 431-440
    • Xiong, X.-P.1
  • 46
    • 69249216441 scopus 로고    scopus 로고
    • Tiger frog virus can infect zebrafish cells for studying up- or down-regulated genes by proteomics approach
    • Luo Y., et al. Tiger frog virus can infect zebrafish cells for studying up- or down-regulated genes by proteomics approach. Virus Res. 2009, 144:171-179.
    • (2009) Virus Res. , vol.144 , pp. 171-179
    • Luo, Y.1
  • 47
    • 84870567906 scopus 로고    scopus 로고
    • A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver
    • Liu W., et al. A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 2012, 56:2268-2276.
    • (2012) Hepatology , vol.56 , pp. 2268-2276
    • Liu, W.1
  • 48
    • 79961174974 scopus 로고    scopus 로고
    • Zebrafish as a potential model organism for drug test against hepatitis C virus
    • Ding C-B., et al. Zebrafish as a potential model organism for drug test against hepatitis C virus. PLoS ONE 2011, 6:e22921.
    • (2011) PLoS ONE , vol.6
    • Ding, C.-B.1
  • 49
    • 84891894371 scopus 로고    scopus 로고
    • Melanoma differentiation-associated gene 5 in zebrafish provoking higher interferon-promoter activity through signalling enhancing of its shorter splicing variant
    • Zou P.F., et al. Melanoma differentiation-associated gene 5 in zebrafish provoking higher interferon-promoter activity through signalling enhancing of its shorter splicing variant. Immunology 2014, 141:192-202.
    • (2014) Immunology , vol.141 , pp. 192-202
    • Zou, P.F.1
  • 50
    • 74649086616 scopus 로고    scopus 로고
    • Cloning of common carp SOCS-3 gene and its expression during embryogenesis, GH-transgene and viral infection
    • Xiao Z-G., et al. Cloning of common carp SOCS-3 gene and its expression during embryogenesis, GH-transgene and viral infection. Fish Shellfish Immunol. 2010, 28:362-371.
    • (2010) Fish Shellfish Immunol. , vol.28 , pp. 362-371
    • Xiao, Z.-G.1
  • 51
    • 0036137798 scopus 로고    scopus 로고
    • Novel form of fibronectin from zebrafish mediates infectious hematopoietic necrosis virus infection
    • Liu X., Collodi P. Novel form of fibronectin from zebrafish mediates infectious hematopoietic necrosis virus infection. J. Virol. 2002, 76:492-498.
    • (2002) J. Virol. , vol.76 , pp. 492-498
    • Liu, X.1    Collodi, P.2
  • 52
    • 84882938694 scopus 로고    scopus 로고
    • Optimization of fixed-permeabilized cell monolayers for high throughput micro-neutralizing antibody assays: application to the zebrafish/viral hemorrhagic septicemia virus (VHSV) model
    • Chinchilla B., et al. Optimization of fixed-permeabilized cell monolayers for high throughput micro-neutralizing antibody assays: application to the zebrafish/viral hemorrhagic septicemia virus (VHSV) model. J. Virol. Methods 2013, 193:627-632.
    • (2013) J. Virol. Methods , vol.193 , pp. 627-632
    • Chinchilla, B.1
  • 53
    • 84876222625 scopus 로고    scopus 로고
    • In vitro neutralization of viral hemorrhagic septicemia virus by plasma from immunized zebrafish
    • Chinchilla B., et al. In vitro neutralization of viral hemorrhagic septicemia virus by plasma from immunized zebrafish. Zebrafish 2013, 10:43-51.
    • (2013) Zebrafish , vol.10 , pp. 43-51
    • Chinchilla, B.1
  • 54
    • 77957139870 scopus 로고    scopus 로고
    • Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach
    • Encinas P., et al. Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. BMC Genomics 2010, 11:518.
    • (2010) BMC Genomics , vol.11 , pp. 518
    • Encinas, P.1
  • 55
    • 84879353241 scopus 로고    scopus 로고
    • Mortality due to viral nervous necrosis in zebrafish Danio rerio and goldfish Carassius auratus
    • Binesh C.P. Mortality due to viral nervous necrosis in zebrafish Danio rerio and goldfish Carassius auratus. Dis. Aquat. Organ. 2013, 104:257-260.
    • (2013) Dis. Aquat. Organ. , vol.104 , pp. 257-260
    • Binesh, C.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.