메뉴 건너뛰기




Volumn , Issue , 2014, Pages 493-502

Nonparametric Bayesian upstream supervised multi-modal topic models

Author keywords

cross modal retrieval; multi modal learning; nonparametric bayesian; topic model

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; DATA MINING; FLEXIBLE STRUCTURES; INFORMATION RETRIEVAL; WEBSITES;

EID: 84906860899     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2556195.2556238     Document Type: Conference Paper
Times cited : (12)

References (41)
  • 1
    • 0002617436 scopus 로고
    • Ferguson distributions via Pólya urn schemes
    • D. Blackwell and J. MacQueen. Ferguson distributions via Pólya urn schemes. The Annals of Statistics, 1(2):353-355, 1973.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.2
  • 2
    • 1542287501 scopus 로고    scopus 로고
    • Modeling annotated data
    • D. Blei and M. Jordan. Modeling annotated data. In ACM SIGIR, pages 127-134, 2003.
    • (2003) ACM SIGIR , pp. 127-134
    • Blei, D.1    Jordan, M.2
  • 4
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 7
    • 84867776237 scopus 로고    scopus 로고
    • Large-margin predictive latent subspace learning for multiview data analysis
    • N. Chen, J. Zhu, F. Sun, and E. Xing. Large-margin predictive latent subspace learning for multiview data analysis. IEEE Trans. Pattern Anal. Mach. Intell., 34(12):2365-2378, 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.12 , pp. 2365-2378
    • Chen, N.1    Zhu, J.2    Sun, F.3    Xing, E.4
  • 8
    • 85161973444 scopus 로고    scopus 로고
    • Predictive subspace learning for multi-view data: A large margin approach
    • N. Chen, J. Zhu, and E. Xing. Predictive subspace learning for multi-view data: A large margin approach. In NIPS, 2010.
    • (2010) NIPS
    • Chen, N.1    Zhu, J.2    Xing, E.3
  • 10
    • 0038401728 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • Springer
    • P. Duygulu, K. Barnard, J. De Freitas, and D. Forsyth. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In ECCV, pages 349-354. Springer, 2002.
    • (2002) ECCV , pp. 349-354
    • Duygulu, P.1    Barnard, K.2    De Freitas, J.3    Forsyth, D.4
  • 11
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • IEEE
    • L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene categories. In CVPR, volume 2, pages 524-531. IEEE, 2005.
    • (2005) CVPR , vol.2 , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 12
    • 5044225521 scopus 로고    scopus 로고
    • Multiple Bernoulli relevance models for image and video annotation
    • IEEE
    • S. Feng, R. Manmatha, and V. Lavrenko. Multiple Bernoulli relevance models for image and video annotation. In CVPR, volume 2, pages II-1002. IEEE, 2004.
    • (2004) CVPR , vol.2
    • Feng, S.1    Manmatha, R.2    Lavrenko, V.3
  • 13
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, pages 209-230, 1973.
    • (1973) The Annals of Statistics , pp. 209-230
    • Ferguson, T.1
  • 14
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • IEEE
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In ICCV, pages 309-316. IEEE, 2009.
    • (2009) ICCV , pp. 309-316
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 15
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 16
    • 24644452540 scopus 로고    scopus 로고
    • A model for learning the semantics of pictures
    • V. Lavrenko, R. Manmatha, and J. Jeon. A model for learning the semantics of pictures. In NIPS, 2003.
    • (2003) NIPS
    • Lavrenko, V.1    Manmatha, R.2    Jeon, J.3
  • 17
    • 80053356136 scopus 로고    scopus 로고
    • The infinite PCFG using hierarchical Dirichlet processes
    • P. Liang, S. Petrov, M. I. Jordan, and D. Klein. The infinite PCFG using hierarchical Dirichlet processes. In EMNLP/CoNLL, 2007.
    • (2007) EMNLP/CoNLL
    • Liang, P.1    Petrov, S.2    Jordan, M.I.3    Klein, D.4
  • 18
    • 53549116749 scopus 로고    scopus 로고
    • Image annotation via graph learning
    • J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma. Image annotation via graph learning. Pattern Recognition, 42(2):218-228, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.2 , pp. 218-228
    • Liu, J.1    Li, M.2    Liu, Q.3    Lu, H.4    Ma, S.5
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 20
    • 70449580491 scopus 로고    scopus 로고
    • A new baseline for image annotation
    • A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In ECCV, volume 8, pages 316-329, 2008.
    • (2008) ECCV , vol.8 , pp. 316-329
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 21
    • 26444490044 scopus 로고    scopus 로고
    • An inference network approach to image retrieval
    • D. Metzler and R. Manmatha. An inference network approach to image retrieval. In CIVR, 2004.
    • (2004) CIVR
    • Metzler, D.1    Manmatha, R.2
  • 22
    • 36048970829 scopus 로고    scopus 로고
    • Modeling semantic aspects for cross-media image indexing
    • F. Monay and D. Gatica-Perez. Modeling semantic aspects for cross-media image indexing. IEEE Trans. Pattern Anal. Mach. Intell., 29(10):1802-1817, 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.10 , pp. 1802-1817
    • Monay, F.1    Gatica-Perez, D.2
  • 23
    • 84872504960 scopus 로고    scopus 로고
    • The discrete infinite logistic normal distribution
    • J. Paisley, C. Wang, and D. M. Blei. The discrete infinite logistic normal distribution. Bayesian Analysis, 7(4):997-1034, 2012.
    • (2012) Bayesian Analysis , vol.7 , Issue.4 , pp. 997-1034
    • Paisley, J.1    Wang, C.2    Blei, D.M.3
  • 26
    • 77956201131 scopus 로고    scopus 로고
    • Multi-field correlated topic modeling
    • K. Salomatin, Y. Yang, and A. Lad. Multi-field correlated topic modeling. SIAM SDM, 2009.
    • (2009) SIAM SDM
    • Salomatin, K.1    Yang, Y.2    Lad, A.3
  • 27
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650, 1994.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 28
    • 84866648988 scopus 로고    scopus 로고
    • Generalized multiview analysis: A discriminative latent space
    • IEEE
    • A. Sharma, A. Kumar, H. Daume, and D. Jacobs. Generalized multiview analysis: A discriminative latent space. In CVPR, pages 2160-2167. IEEE, 2012.
    • (2012) CVPR , pp. 2160-2167
    • Sharma, A.1    Kumar, A.2    Daume, H.3    Jacobs, D.4
  • 31
  • 32
    • 70450196280 scopus 로고    scopus 로고
    • Multi-label sparse coding for automatic image annotation
    • IEEE
    • C.Wang, S. Yan, L. Zhang, and H. Zhang. Multi-label sparse coding for automatic image annotation. In CVPR, pages 1643-1650. IEEE, 2009.
    • (2009) CVPR , pp. 1643-1650
    • Wang, C.1    Yan, S.2    Zhang, L.3    Zhang, H.4
  • 33
    • 79952365632 scopus 로고    scopus 로고
    • Mining social images with distance metric learning for automated image tagging
    • ACM
    • P. Wu, S. C.-H. Hoi, P. Zhao, and Y. He. Mining social images with distance metric learning for automated image tagging. In WSDM, pages 197-206. ACM, 2011.
    • (2011) WSDM , pp. 197-206
    • Wu, P.1    Hoi, S.C.-H.2    Zhao, P.3    He, Y.4
  • 34
    • 84874266996 scopus 로고    scopus 로고
    • Online multi-modal distance learning for scalable multimedia retrieval
    • ACM
    • H. Xia, P. Wu, and S. C. Hoi. Online multi-modal distance learning for scalable multimedia retrieval. In WSDM, pages 455-464. ACM, 2013.
    • (2013) WSDM , pp. 455-464
    • Xia, H.1    Wu, P.2    Hoi, S.C.3
  • 35
    • 67449114623 scopus 로고    scopus 로고
    • Mining associated text and images with dual-wing harmoniums
    • E. Xing, R. Yan, and A. Hauptmann. Mining associated text and images with dual-wing harmoniums. In UAI, 2005.
    • (2005) UAI
    • Xing, E.1    Yan, R.2    Hauptmann, A.3
  • 36
    • 84858732164 scopus 로고    scopus 로고
    • Multi-modal hierarchical Dirichlet process model for predicting image annotation and image-object label correspondence
    • O. Yakhnenko and V. Honavar. Multi-modal hierarchical Dirichlet process model for predicting image annotation and image-object label correspondence. In SIAM SDM, 2009.
    • (2009) SIAM SDM
    • Yakhnenko, O.1    Honavar, V.2
  • 37
    • 33746634710 scopus 로고    scopus 로고
    • Automated image annotation using global features and robust nonparametric density estimation
    • A. Yavlinsky, E. Schofield, and S. Rüger. Automated image annotation using global features and robust nonparametric density estimation. In CIVR, 2005.
    • (2005) CIVR
    • Yavlinsky, A.1    Schofield, E.2    Rüger, S.3
  • 38
    • 84874571254 scopus 로고    scopus 로고
    • Cross-modal topic correlations for multimedia retrieval
    • J. Yu, Y. Cong, Z. Qin, and T. Wan. Cross-modal topic correlations for multimedia retrieval. In ICPR, 2012.
    • (2012) ICPR
    • Yu, J.1    Cong, Y.2    Qin, Z.3    Wan, T.4
  • 39
    • 84866037322 scopus 로고    scopus 로고
    • A probabilistic model for multimodal hash function learning
    • Y. Zhen and D. Yeung. A probabilistic model for multimodal hash function learning. In ACM SIGKDD, 2012.
    • (2012) ACM SIGKDD
    • Zhen, Y.1    Yeung, D.2
  • 41
    • 85161960437 scopus 로고    scopus 로고
    • Large margin learning of upstream scene understanding models
    • J. Zhu, L.-J. Li, L. Fei-Fei, and E. P. Xing. Large margin learning of upstream scene understanding models. In NIPS, pages 2586-2594, 2010.
    • (2010) NIPS , pp. 2586-2594
    • Zhu, J.1    Li, L.-J.2    Fei-Fei, L.3    Xing, E.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.