메뉴 건너뛰기




Volumn , Issue , 2012, Pages 940-948

A probabilistic model for multimodal hash function learning

Author keywords

binary latent factor models; hash function learning; metric learning; multimodal similarity search

Indexed keywords

EXPERIMENTAL VALIDATIONS; FUNCTION LEARNING; HAMMING SPACE; LATENT FACTOR; METRIC LEARNING; MULTI-MODAL; MULTI-MODAL DATA; MULTIPLE MODALITIES; PROBABILISTIC MODELS; REALISTIC DATA; SCALABILITY ISSUE; SIMILARITY SEARCH; SYNTHETIC DATA;

EID: 84866037322     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339678     Document Type: Conference Paper
Times cited : (204)

References (45)
  • 2
    • 37549058056 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Communications of the ACM, 51(1):117-122, 2008.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 117-122
    • Andoni, A.1    Indyk, P.2
  • 3
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching in fixed dimensions
    • S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM, 45(6):891-923, 1998.
    • (1998) Journal of the ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    Wu, A.Y.5
  • 6
    • 77955989956 scopus 로고    scopus 로고
    • Data fusion through cross-modality metric learning using similarity-sensitive hashing
    • M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios. Data fusion through cross-modality metric learning using similarity-sensitive hashing. In CVPR, 2010.
    • (2010) CVPR
    • Bronstein, M.M.1    Bronstein, A.M.2    Michel, F.3    Paragios, N.4
  • 7
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, 2002.
    • (2002) STOC
    • Charikar, M.1
  • 8
    • 74049158146 scopus 로고    scopus 로고
    • NUS-WIDE: A real-world web image database from National University of Singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. NUS-WIDE: A real-world web image database from National University of Singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.-T.6
  • 9
  • 10
    • 65449117321 scopus 로고    scopus 로고
    • Locality sensitive hash functions based on concomitant rank order statistics
    • K. Eshghi and S. Rajaram. Locality sensitive hash functions based on concomitant rank order statistics. In KDD, 2008.
    • (2008) KDD
    • Eshghi, K.1    Rajaram, S.2
  • 12
    • 15044355327 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, 1999.
    • (1999) VLDB
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 13
    • 84864043341 scopus 로고    scopus 로고
    • Infinite latent feature models and the Indian buffet process
    • T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In NIPS 18, 2005.
    • (2005) NIPS , vol.18
    • Griffiths, T.L.1    Ghahramani, Z.2
  • 14
    • 77956220112 scopus 로고    scopus 로고
    • Scalable similarity search with optimized kernel hashing
    • J. He, W. Liu, and S.-F. Chang. Scalable similarity search with optimized kernel hashing. In KDD, 2010.
    • (2010) KDD
    • He, J.1    Liu, W.2    Chang, S.-F.3
  • 15
    • 56449125362 scopus 로고    scopus 로고
    • A nonparametric Bayesian approach to modeling overlapping clusters
    • K. A. Heller and Z. Ghahramani. A nonparametric Bayesian approach to modeling overlapping clusters. In AISTATS, 2007.
    • (2007) AISTATS
    • Heller, K.A.1    Ghahramani, Z.2
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-509, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-509
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 17
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In STOC, 1998.
    • (1998) STOC
    • Indyk, P.1    Motwani, R.2
  • 18
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. In NIPS 22, 2009.
    • (2009) NIPS , vol.22
    • Kulis, B.1    Darrell, T.2
  • 19
    • 77953184849 scopus 로고    scopus 로고
    • Kernelized locality-sensitive hashing for scalable image search
    • B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In ICCV, 2009.
    • (2009) ICCV
    • Kulis, B.1    Grauman, K.2
  • 20
    • 84866034209 scopus 로고    scopus 로고
    • Learning hash functions for cross-view similarity search
    • S. Kumar and R. Udupa. Learning hash functions for cross-view similarity search. In IJCAI, 2011.
    • (2011) IJCAI
    • Kumar, S.1    Udupa, R.2
  • 22
    • 77955987829 scopus 로고    scopus 로고
    • SPEC hashing: Similarity preserving algorithm for entropy-based coding
    • R.-S. Lin, D. A. Ross, and J. Yagnik. SPEC hashing: Similarity preserving algorithm for entropy-based coding. In CVPR, 2010.
    • (2010) CVPR
    • Lin, R.-S.1    Ross, D.A.2    Yagnik, J.3
  • 24
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 25
    • 85069300650 scopus 로고    scopus 로고
    • Modeling dyadic data with binary latent factors
    • E. Meeds, Z. Ghahramani, R. Neal, and S. T. Roweis. Modeling dyadic data with binary latent factors. In NIPS 19, 2006.
    • (2006) NIPS , vol.19
    • Meeds, E.1    Ghahramani, Z.2    Neal, R.3    Roweis, S.T.4
  • 26
    • 77955986970 scopus 로고    scopus 로고
    • Weakly-supervised hashing in kernel space
    • Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in kernel space. In CVPR, 2010.
    • (2010) CVPR
    • Mu, Y.1    Shen, J.2    Yan, S.3
  • 27
    • 80053457714 scopus 로고    scopus 로고
    • Minimal loss hashing for compact binary codes
    • M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary codes. In ICML, 2011.
    • (2011) ICML
    • Norouzi, M.1    Fleet, D.J.2
  • 28
    • 80053439603 scopus 로고    scopus 로고
    • Learning multi-view neighborhood preserving projections
    • N. Quadrianto and C. H. Lampert. Learning multi-view neighborhood preserving projections. In ICML, 2011.
    • (2011) ICML
    • Quadrianto, N.1    Lampert, C.H.2
  • 29
    • 79954525255 scopus 로고    scopus 로고
    • Locality-sensitive binary codes from shift-invariant kernels
    • M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant kernels. In NIPS 22, 2009.
    • (2009) NIPS , vol.22
    • Raginsky, M.1    Lazebnik, S.2
  • 32
    • 84880692052 scopus 로고    scopus 로고
    • A brief introduction to Boosting
    • R. E. Schapire. A brief introduction to Boosting. In IJCAI, 1999.
    • (1999) IJCAI
    • Schapire, R.E.1
  • 35
    • 0345414554 scopus 로고    scopus 로고
    • Fast pose estimation with parameter-sensitive hashing
    • G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive hashing. In ICCV, 2003.
    • (2003) ICCV
    • Shakhnarovich, G.1    Viola, P.2    Darrell, T.3
  • 36
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In CVPR, 2008.
    • (2008) CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 37
    • 80052108188 scopus 로고    scopus 로고
    • No free lunch: Brute force vs. locality-sensitive hashing for cross-lingual pairwise similarity
    • F. Ture, T. Elsayed, and J. Lin. No free lunch: Brute force vs. locality-sensitive hashing for cross-lingual pairwise similarity. In SIGIR, 2011.
    • (2011) SIGIR
    • Ture, F.1    Elsayed, T.2    Lin, J.3
  • 38
    • 77955988108 scopus 로고    scopus 로고
    • Semi-supervised hashing for scalable image retrieval
    • J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image retrieval. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 39
    • 77956496400 scopus 로고    scopus 로고
    • Sequential projection learning for hashing with compact codes
    • J. Wang, S. Kumar, and S.-F. Chang. Sequential projection learning for hashing with compact codes. In ICML, 2010.
    • (2010) ICML
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 41
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In NIPS 15, 2002.
    • (2002) NIPS , vol.15
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 42
    • 84863036764 scopus 로고    scopus 로고
    • Complementary hashing for approximate nearest neighbor search
    • H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu. Complementary hashing for approximate nearest neighbor search. In ICCV, 2011.
    • (2011) ICCV
    • Xu, H.1    Wang, J.2    Li, Z.3    Zeng, G.4    Li, S.5    Yu, N.6
  • 43
    • 80052110460 scopus 로고    scopus 로고
    • Composite hashing with multiple information sources
    • D. Zhang, F. Wang, and L. Si. Composite hashing with multiple information sources. In SIGIR, 2011.
    • (2011) SIGIR
    • Zhang, D.1    Wang, F.2    Si, L.3
  • 44
    • 77956027394 scopus 로고    scopus 로고
    • Self-taught hashing for fast similarity search
    • D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast similarity search. In SIGIR, 2010.
    • (2010) SIGIR
    • Zhang, D.1    Wang, J.2    Cai, D.3    Lu, J.4
  • 45


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.