메뉴 건너뛰기




Volumn 9781461463092, Issue , 2014, Pages 173-210

Real-time data analytics in sensor networks

Author keywords

Data Analytics; Data Collection; Data Aware Network Protocols; Deviation Detection; Outliers; Uncertain Data Series; Wireless Sensor Networks

Indexed keywords

DATA ACQUISITION; DATA ANALYTICS; DATA HANDLING; NETWORK PROTOCOLS;

EID: 84906668423     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-6309-2_7     Document Type: Chapter
Times cited : (13)

References (115)
  • 3
    • 80052441319 scopus 로고    scopus 로고
    • On sensor selection in linked information networks
    • C. C. Aggarwal, A. Bar-Noy, and S. Shamoun. On sensor selection in linked information networks. In DCOSS, pages 1-8, 2011.
    • (2011) DCOSS , pp. 1-8
    • Aggarwal, C.C.1    Bar-Noy, A.2    Shamoun, S.3
  • 4
    • 80052665998 scopus 로고    scopus 로고
    • On dynamic data-driven selection of sensor streams
    • C. C. Aggarwal, Y. Xie, and P. S. Yu. On dynamic data-driven selection of sensor streams. In KDD, pages 1226-1234, 2011.
    • (2011) KDD , pp. 1226-1234
    • Aggarwal, C.C.1    Xie, Y.2    Yu, P.S.3
  • 7
    • 84883244633 scopus 로고    scopus 로고
    • Detection and tracking of discrete phenomena in sensor-network databases
    • Santa Barbara, CA
    • M. H. Ali, M. F. Mokbel, W. G. Aref, and I. Kamel. Detection and tracking of discrete phenomena in sensor-network databases. In SSDBM, pages 163-172, Santa Barbara, CA, 2005.
    • (2005) SSDBM , pp. 163-172
    • Ali, M.H.1    Mokbel, M.F.2    Aref, W.G.3    Kamel, I.4
  • 8
    • 69049088076 scopus 로고    scopus 로고
    • Probabilistic similarity search for uncertain time series
    • J. Asfalg, H.-P. Kriegel, P. Kröger, and M. Renz. Probabilistic similarity search for uncertain time series. In SSDBM, pages 435- 443, 2009.
    • (2009) SSDBM , pp. 435-443
    • Asfalg, J.1    Kriegel, H.-P.2    Kröger, P.3    Renz, M.4
  • 9
    • 84893284431 scopus 로고    scopus 로고
    • Selecting representatives in a sensor network
    • E. Baralis and T. Cerquitelli. Selecting representatives in a sensor network. In In Proceedings of the SEBD, pages 351-360, 2006.
    • (2006) Proceedings of the SEBD , pp. 351-360
    • Baralis, E.1    Cerquitelli, T.2
  • 10
    • 0037928080 scopus 로고    scopus 로고
    • A taxonomy for spatiotemporal connectionist networks revisited: The unsupervised case
    • A. Barreto, A. Araujo, and S. Kremer. A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural Computation, 15:1255-1320, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1255-1320
    • Barreto, A.1    Araujo, A.2    Kremer, S.3
  • 11
    • 0000286376 scopus 로고
    • Using dynamic time warping to find patterns in time series
    • D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In KDD Workshop, pages 359-370, 1994.
    • (1994) KDD Workshop , pp. 359-370
    • Berndt, D.J.1    Clifford, J.2
  • 12
    • 38149017263 scopus 로고    scopus 로고
    • Separating the wheat from the chaff: Practical anomaly detection schemes in ecological applications of distributed sensor networks
    • L. M. A. Bettencourt, A. A. Hagberg, and L. B. Larkey. Separating the wheat from the chaff: Practical anomaly detection schemes in ecological applications of distributed sensor networks. In DCOSS, pages 223-239, 2007.
    • (2007) DCOSS , pp. 223-239
    • Bettencourt, L.M.A.1    Hagberg, A.A.2    Larkey, L.B.3
  • 16
    • 0344496690 scopus 로고    scopus 로고
    • SWAT: Hierarchical stream summarization in large networks
    • Bangalore, India, March
    • A. Bulut and A. K. Singh. SWAT: Hierarchical Stream Summarization in Large Networks. In International Conference on Data Engineering, pages 303-314, Bangalore, India, March 2003.
    • (2003) International Conference on Data Engineering , pp. 303-314
    • Bulut, A.1    Singh, A.K.2
  • 17
    • 84864229980 scopus 로고    scopus 로고
    • Detecting outliers in sensor networks using the geometric approach
    • S. Burdakis and A. Deligiannakis. Detecting outliers in sensor networks using the geometric approach. In ICDE, 2012.
    • (2012) ICDE
    • Burdakis, S.1    Deligiannakis, A.2
  • 21
    • 0032688141 scopus 로고    scopus 로고
    • Efficient time series matching by wavelets
    • Sydney, Australia, March
    • K. Chan and W. Fu. Efficient Time Series Matching by Wavelets. In International Conference on Data Engineering, pages 126-133, Sydney, Australia, March 1999.
    • (1999) International Conference on Data Engineering , pp. 126-133
    • Chan, K.1    Fu, W.2
  • 23
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages 380-388, 2002.
    • (2002) STOC , pp. 380-388
    • Charikar, M.1
  • 26
    • 32344446365 scopus 로고    scopus 로고
    • Fast window correlations over uncooperative time series
    • R. Cole, D. Shasha, and X. Zhao. Fast window correlations over uncooperative time series. In KDD, pages 743-749, 2005.
    • (2005) KDD , pp. 743-749
    • Cole, R.1    Shasha, D.2    Zhao, X.3
  • 27
    • 83055169682 scopus 로고    scopus 로고
    • Similarity matching for uncertain time series: Analytical and experimental comparison
    • M. Dallachiesa, B. Nushi, T. Palpanas, and K. Mirylenka. Similarity matching for uncertain time series: analytical and experimental comparison. In QUeST, 2011.
    • (2011) QUeST
    • Dallachiesa, M.1    Nushi, B.2    Palpanas, T.3    Mirylenka, K.4
  • 29
    • 0026895542 scopus 로고
    • The gamma model- A new neural model for temporal processing
    • B. de Vries and J. C. Principe. The gamma model- A new neural model for temporal processing. Neural Networks, 5:565-576, 1992.
    • (1992) Neural Networks , vol.5 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 30
    • 67649637306 scopus 로고    scopus 로고
    • Another outlier bites the dust: Computing meaningful aggregates in sensor networks
    • A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and A. Delis. Another outlier bites the dust: Computing meaningful aggregates in sensor networks. In ICDE, pages 988-999, 2009.
    • (2009) ICDE , pp. 988-999
    • Deligiannakis, A.1    Kotidis, Y.2    Vassalos, V.3    Stoumpos, V.4    Delis, A.5
  • 31
    • 33745662761 scopus 로고    scopus 로고
    • Using probabilistic models for data management in acquisitional environments
    • A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models for data management in acquisitional environments. In CIDR, pages 317-328, 2005.
    • (2005) CIDR , pp. 317-328
    • Deshpande, A.1    Guestrin, C.2    Madden, S.3
  • 33
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 1(2):1542-1552, 2008.
    • (2008) Proceedings of the VLDB Endowment , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 34
    • 35048827085 scopus 로고    scopus 로고
    • Context-aware sensors
    • E. Elnahrawy and B. Nath. Context-aware sensors. In EWSN, pages 77-93, 2004.
    • (2004) EWSN , pp. 77-93
    • Elnahrawy, E.1    Nath, B.2
  • 35
  • 39
    • 78149313475 scopus 로고    scopus 로고
    • Pao: Powerefficient attribution of outliers in wireless sensor networks
    • N. Giatrakos, Y. Kotidis, and A. Deligiannakis. Pao: powerefficient attribution of outliers in wireless sensor networks. In DMSN, pages 33-38, 2010.
    • (2010) DMSN , pp. 33-38
    • Giatrakos, N.1    Kotidis, Y.2    Deligiannakis, A.3
  • 41
    • 0005308437 scopus 로고    scopus 로고
    • Surfing wavelets on streams: One-pass summaries for approximate aggregate queries
    • A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In VLDB, pages 79-88, 2001.
    • (2001) VLDB , pp. 79-88
    • Gilbert, A.C.1    Kotidis, Y.2    Muthukrishnan, S.3    Strauss, M.4
  • 43
    • 77954468021 scopus 로고    scopus 로고
    • Online distributed sensor selection
    • D. Golovin, M. Faulkner, and A. Krause. Online distributed sensor selection. In IPSN, pages 220-231, 2010.
    • (2010) IPSN , pp. 220-231
    • Golovin, D.1    Faulkner, M.2    Krause, A.3
  • 45
    • 3042820611 scopus 로고    scopus 로고
    • Distributed regression: An efficient framework for modeling sensor network data
    • Berkeley, CA
    • C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed Regression: an Efficient Framework for Modeling Sensor Network Data. In IPSN, Berkeley, CA, 2004.
    • (2004) IPSN
    • Guestrin, C.1    Bodik, P.2    Thibaux, R.3    Paskin, M.4    Madden, S.5
  • 49
    • 35248855943 scopus 로고    scopus 로고
    • Beyond average: Toward sophisticated sensing with queries
    • J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Toward sophisticated sensing with queries. In IPSN, pages 63-79, 2003.
    • (2003) IPSN , pp. 63-79
    • Hellerstein, J.M.1    Hong, W.2    Madden, S.3    Stanek, K.4
  • 50
    • 0036375244 scopus 로고    scopus 로고
    • Impact of network density on data aggregation in wireless sensor networks
    • C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network density on data aggregation in wireless sensor networks. In ICDCS, 2002.
    • (2002) ICDCS
    • Intanagonwiwat, C.1    Estrin, D.2    Govindan, R.3    Heidemann, J.4
  • 52
    • 79955521337 scopus 로고    scopus 로고
    • Prediction or not? An energyefficient framework for clustering-based data collection in wireless sensor networks
    • 22, June
    • H. Jiang, S. Jin, and C. Wang. Prediction or not? An energyefficient framework for clustering-based data collection in wireless sensor networks. IEEE Trans. on Parallel Distributed Systems, 22, June 2011.
    • (2011) IEEE Trans. on Parallel Distributed Systems
    • Jiang, H.1    Jin, S.2    Wang, C.3
  • 53
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems, 3(3):263-286, 2001.
    • (2001) Knowledge and Information Systems , vol.3 , Issue.3 , pp. 263-286
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 54
    • 85150810448 scopus 로고    scopus 로고
    • An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
    • New York, NY, USA, August
    • E. J. Keogh and M. J. Pazzani. An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback. In International Conference on Knowledge Discovery and Data Mining, pages 239-243, New York, NY, USA, August 1998.
    • (1998) International Conference on Knowledge Discovery and Data Mining , pp. 239-243
    • Keogh, E.J.1    Pazzani, M.J.2
  • 55
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • NY, NY
    • E. M. Knorr and R. T. Ng. Algorithms for Mining Distance-Based Outliers in Large Datasets. In VLDB, NY, NY, 1998.
    • (1998) VLDB
    • Knorr, E.M.1    Ng, R.T.2
  • 58
    • 0344496679 scopus 로고    scopus 로고
    • Capturing sensor-generated time series with quality guarantees
    • Bangalore, India, March
    • I. Lazaridis and S. Mehrotra. Capturing Sensor-Generated Time Series with Quality Guarantees. In International Conference on Data Engineering, pages 429-440, Bangalore, India, March 2003.
    • (2003) International Conference on Data Engineering , pp. 429-440
    • Lazaridis, I.1    Mehrotra, S.2
  • 60
    • 0038335769 scopus 로고    scopus 로고
    • Tag: A tiny aggregation service for ad-hoc sensor networks
    • S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny aggregation service for ad-hoc sensor networks. In OSDI, 2002.
    • (2002) OSDI
    • Madden, S.1    Franklin, M.J.2    Hellerstein, J.M.3    Hong, W.4
  • 62
    • 33745629327 scopus 로고    scopus 로고
    • Distributed special clustering in sensor networks
    • A. Meka and A. K. Singh. Distributed special clustering in sensor networks. In EDBT 2006, LNCS 3896, pages 980-1000, 2006.
    • (2006) EDBT 2006, LNCS , vol.3896 , pp. 980-1000
    • Meka, A.1    Singh, A.K.2
  • 64
    • 84857186971 scopus 로고    scopus 로고
    • Incremental elliptical boundary estimation for anomaly detection in wireless sensor networks
    • M. Moshtaghi, C. Leckie, S. Karunasekera, J. C. Bezdek, S. Rajasegarar, and M. Palaniswami. Incremental elliptical boundary estimation for anomaly detection in wireless sensor networks. In ICDM, pages 467-476, 2011.
    • (2011) ICDM , pp. 467-476
    • Moshtaghi, M.1    Leckie, C.2    Karunasekera, S.3    Bezdek, J.C.4    Rajasegarar, S.5    Palaniswami, M.6
  • 65
    • 71049129514 scopus 로고    scopus 로고
    • BoX-MACs: Exploiting physical and link layer boundaries in low-power networking
    • D. Moss and P. Levis. BoX-MACs: Exploiting Physical and Link Layer Boundaries in Low-Power Networking. Technical Report SING-08-00, 2008.
    • (2008) Technical Report SING-08-00
    • Moss, D.1    Levis, P.2
  • 67
    • 71049139752 scopus 로고    scopus 로고
    • Energy efficient sensor data logging with amnesic flash storage
    • S. Nath. Energy efficient sensor data logging with amnesic flash storage. In IPSN, pages 157-168, 2009.
    • (2009) IPSN , pp. 157-168
    • Nath, S.1
  • 68
    • 34547278772 scopus 로고    scopus 로고
    • Boundary estimation in sensor networks: Theory and methods
    • Palo Alto, CA
    • R. Nowak and U. Mitra. Boundary estimation in sensor networks: Theory and methods. In IPSN, pages 80-95, Palo Alto, CA, 2003.
    • (2003) IPSN , pp. 80-95
    • Nowak, R.1    Mitra, U.2
  • 69
    • 84873632757 scopus 로고    scopus 로고
    • Online distribution estimation for streaming data: Framework and applications
    • T. Palpanas, V. Kalogeraki, and D. Gunopulos. Online distribution estimation for streaming data: Framework and applications. In SEBD, pages 430-438, 2007.
    • (2007) SEBD , pp. 430-438
    • Palpanas, T.1    Kalogeraki, V.2    Gunopulos, D.3
  • 70
    • 44649151073 scopus 로고    scopus 로고
    • Streaming time series summarization using user-defined amnesic functions
    • T. Palpanas, M. Vlachos, E. J. Keogh, and D. Gunopulos. Streaming time series summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data Eng., 20(7):992-1006, 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.7 , pp. 992-1006
    • Palpanas, T.1    Vlachos, M.2    Keogh, E.J.3    Gunopulos, D.4
  • 72
    • 33745631543 scopus 로고    scopus 로고
    • Streaming pattern discovery in multiple time-series
    • S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In VLDB, pages 697-708, 2005.
    • (2005) VLDB , pp. 697-708
    • Papadimitriou, S.1    Sun, J.2    Faloutsos, C.3
  • 73
    • 78649689569 scopus 로고    scopus 로고
    • SCCS: Spatiotemporal clustering and compressing schemes for efficient data collection applications in WSNs
    • N. D. Pham, T. D. Le, and H. Choo. SCCS: Spatiotemporal clustering and compressing schemes for efficient data collection applications in WSNs. Int. Journal of Communication Systems, 23, 2010.
    • (2010) Int. Journal of Communication Systems , vol.23
    • Pham, N.D.1    Le, T.D.2    Choo, H.3
  • 75
    • 85192420787 scopus 로고    scopus 로고
    • Similarity search over time series data using wavelets
    • San Jose, CA, USA, February
    • I. Popivanov and R. J. Miller. Similarity Search Over Time Series Data Using Wavelets. In International Conference on Data Engineering, pages 802-813, San Jose, CA, USA, February 2002.
    • (2002) International Conference on Data Engineering , pp. 802-813
    • Popivanov, I.1    Miller, R.J.2
  • 76
    • 0032626364 scopus 로고    scopus 로고
    • On similarity-based queries for time series data
    • Sydney, Australia, March
    • D. Rafiei. On Similarity-Based Queries for Time Series Data. In International Conference on Data Engineering, Sydney, Australia, March 1999.
    • (1999) International Conference on Data Engineering
    • Rafiei, D.1
  • 77
    • 38549109147 scopus 로고    scopus 로고
    • Quarter sphere based distributed anomaly detection in wireless sensor networks
    • S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C. Bezdek. Quarter sphere based distributed anomaly detection in wireless sensor networks. In ICC, pages 3864-3869, 2007.
    • (2007) ICC , pp. 3864-3869
    • Rajasegarar, S.1    Leckie, C.2    Palaniswami, M.3    Bezdek, J.C.4
  • 78
    • 85132261632 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD Conference, pages 427-438, 2000.
    • (2000) SIGMOD Conference , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 80
    • 85192425009 scopus 로고    scopus 로고
    • Clustering distributed sensor data streams
    • Springer-Verlag
    • P. P. Rodrigues, J. Gama, and L. Lopes. Clustering distributed sensor data streams. In ECML PKDD 2008, LNAI. Springer- Verlag, 2008.
    • (2008) ECML PKDD 2008, LNAI
    • Rodrigues, P.P.1    Gama, J.2    Lopes, L.3
  • 81
    • 84862656283 scopus 로고    scopus 로고
    • Distributed threshold querying of general functions by a difference of monotonic representation
    • G. Sagy, D. Keren, I. Sharfman, and A. Schuster. Distributed threshold querying of general functions by a difference of monotonic representation. PVLDB, 4(2):46-57, 2010.
    • (2010) PVLDB , vol.4 , Issue.2 , pp. 46-57
    • Sagy, G.1    Keren, D.2    Sharfman, I.3    Schuster, A.4
  • 85
    • 37849053357 scopus 로고    scopus 로고
    • Outlier detection in sensor networks
    • B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor networks. In MobiHoc, pages 219-228, 2007.
    • (2007) MobiHoc , pp. 219-228
    • Sheng, B.1    Li, Q.2    Mao, W.3    Jin, W.4
  • 86
    • 34250676986 scopus 로고    scopus 로고
    • Constraint chaining: On energy-efficient continuous monitoring in sensor networks
    • A. Silberstein, R. Braynard, and J. Yang. Constraint chaining: on energy-efficient continuous monitoring in sensor networks. In SIGMOD Conference, pages 157-168, 2006.
    • (2006) SIGMOD Conference , pp. 157-168
    • Silberstein, A.1    Braynard, R.2    Yang, J.3
  • 89
    • 57349163417 scopus 로고    scopus 로고
    • Fast and quality-guaranteed data streaming in resource-constrained sensor networks
    • E. Soroush, K. Wu, and J. Pei. Fast and quality-guaranteed data streaming in resource-constrained sensor networks. In MobiHoc, pages 391-400, 2008.
    • (2008) MobiHoc , pp. 391-400
    • Soroush, E.1    Wu, K.2    Pei, J.3
  • 92
    • 38949196708 scopus 로고    scopus 로고
    • Distributed real-time detection and tracking of homogeneous regions in sensor networks
    • Rio de Janeiro, Brazil
    • S. Subramaniam, V. Kalogeraki, and T. Palpanas. Distributed Real-Time Detection and Tracking of Homogeneous Regions in Sensor Networks. In RTSS, Rio de Janeiro, Brazil, 2006.
    • (2006) RTSS
    • Subramaniam, S.1    Kalogeraki, V.2    Palpanas, T.3
  • 94
    • 84883084617 scopus 로고    scopus 로고
    • Embracing uncertainty in large-scale computational astrophysics
    • D. Suciu, A. Connolly, and B. Howe. Embracing uncertainty in large-scale computational astrophysics. In MUD, pages 63-77, 2009.
    • (2009) MUD , pp. 63-77
    • Suciu, D.1    Connolly, A.2    Howe, B.3
  • 96
    • 77954736324 scopus 로고    scopus 로고
    • Pods: A new model and processing algorithms for uncertain data streams
    • T. T. L. Tran, L. Peng, B. Li, Y. Diao, and A. Liu. Pods: a new model and processing algorithms for uncertain data streams. In SIGMOD Conference, pages 159-170, 2010.
    • (2010) SIGMOD Conference , pp. 159-170
    • Tran, T.T.L.1    Peng, L.2    Li, B.3    Diao, Y.4    Liu, A.5
  • 99
    • 2342556586 scopus 로고    scopus 로고
    • Spatio-temporal correlation: Theory and applications for wireless sensor networks
    • M. C. Vuran, O. B. Akan, and I. F. Akyildiz. Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks, 45(3), 2004.
    • (2004) Computer Networks , vol.45 , Issue.3
    • Vuran, M.C.1    Akan, O.B.2    Akyildiz, I.F.3
  • 100
    • 0035121216 scopus 로고    scopus 로고
    • Smart dust: Communicating with a cubic-millimeter computer
    • January
    • B. Warneke, M. Last, B. Liebowitz, and K. Pister. Smart dust: Communicating with a cubic-millimeter computer. IEEE Computer Magazine, pages 44-51, January 2001.
    • (2001) IEEE Computer Magazine , pp. 44-51
    • Warneke, B.1    Last, M.2    Liebowitz, B.3    Pister, K.4
  • 102
    • 34347262454 scopus 로고    scopus 로고
    • Localized outlying and boundary data detection in sensor networks
    • W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, and P. Deng. Localized outlying and boundary data detection in sensor networks. IEEE Trans. Knowl. Data Eng., 19(8):1145-1157, 2007.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.8 , pp. 1145-1157
    • Wu, W.1    Cheng, X.2    Ding, M.3    Xing, K.4    Liu, F.5    Deng, P.6
  • 104
    • 0036949025 scopus 로고    scopus 로고
    • A two-tier data dissemination model for large-scale wireless sensor networks
    • Atlanta, GA, USA
    • F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A Two-Tier Data Dissemination Model for Large-Scale Wireless Sensor Networks. In MOBICOM, Atlanta, GA, USA, 2002.
    • (2002) MOBICOM
    • Ye, F.1    Luo, H.2    Cheng, J.3    Lu, S.4    Zhang, L.5
  • 106
    • 0008693810 scopus 로고    scopus 로고
    • Fast time sequence indexing for arbitrary LP-norms
    • Cairo, Egypt, September
    • B. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary LP-Norms. In VLDB International Conference, pages 385-394, Cairo, Egypt, September 2000.
    • (2000) VLDB International Conference , pp. 385-394
    • Yi, B.1    Faloutsos, C.2
  • 109
    • 38049044112 scopus 로고    scopus 로고
    • Unsupervised outlier detection in sensor networks using aggregation tree
    • K. Zhang, S. Shi, H. Gao, and J. Li. Unsupervised outlier detection in sensor networks using aggregation tree. In ADMA, pages 158- 169, 2007.
    • (2007) ADMA , pp. 158-169
    • Zhang, K.1    Shi, S.2    Gao, H.3    Li, J.4
  • 110
    • 17744363146 scopus 로고    scopus 로고
    • Routing protocols for self-organizing hierarchical ad hoc wireless networks
    • S. Zhao, K. Tepe, I. Seskar, and D. Raychaudhuri. Routing protocols for self-organizing hierarchical ad hoc wireless networks. In IEEE Sarnoff Symposium, 2003.
    • (2003) IEEE Sarnoff Symposium
    • Zhao, S.1    Tepe, K.2    Seskar, I.3    Raychaudhuri, D.4
  • 111
    • 85008015696 scopus 로고    scopus 로고
    • Generalized dimension-reduction framework for recent-biased time series analysis
    • Y. Zhao and S. Zhang. Generalized dimension-reduction framework for recent-biased time series analysis. IEEE Trans. Knowl. Data Eng., 18(2):231-244, 2006.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.2 , pp. 231-244
    • Zhao, Y.1    Zhang, S.2
  • 112
    • 78651341064 scopus 로고    scopus 로고
    • On wavelet decomposition of uncertain time series data sets
    • Y. Zhao, C. C. Aggarwal, and P. S. Yu. On wavelet decomposition of uncertain time series data sets. In CIKM, pages 129-138, 2010.
    • (2010) CIKM , pp. 129-138
    • Zhao, Y.1    Aggarwal, C.C.2    Yu, P.S.3
  • 114
    • 0141637082 scopus 로고    scopus 로고
    • Statstream: Statistical monitoring of thousands of data streams in real time
    • Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data streams in real time. In VLDB, pages 358-369, 2002.
    • (2002) VLDB , pp. 358-369
    • Zhu, Y.1    Shasha, D.2
  • 115
    • 34249872509 scopus 로고    scopus 로고
    • Network outlier cleaning for data collection in sensor networks
    • Y. Zhuang and L. Chen. In-network outlier cleaning for data collection in sensor networks. In CleanDB, pages 41-48, 2006.
    • (2006) CleanDB , pp. 41-48
    • Zhuang, Y.1    Chen, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.