메뉴 건너뛰기




Volumn , Issue , 2007, Pages 10-21

Data-driven processing in sensor networks

Author keywords

[No Author keywords available]

Indexed keywords

BATTERY LIFE; BUILDING MODEL; CO-DESIGNS; COMMUNICATION LAYERS; CONSTRUCTING MODELS; CONTINUOUS DATA; DATA COLLECTION; DATA-DRIVEN; DATA-DRIVEN PROCESSING; ECOLOGICAL MODELING; ENERGY CONSUMER; FOREST GROWTH; NETWORK APPLICATIONS; NETWORK NODE; SPATIAL MODELS;

EID: 84863390803     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (30)

References (27)
  • 1
    • 84863352268 scopus 로고    scopus 로고
    • TinyOS. www.tinyos.net.
    • TinyOS
  • 2
    • 33749644725 scopus 로고    scopus 로고
    • Approximate data collection in sensor networks using probabilistic models
    • Atlanta, Georgia, USA, Apr.
    • D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate Data Collection in Sensor Networks using Probabilistic Models. In ICDE, Atlanta, Georgia, USA, Apr. 2006.
    • (2006) ICDE
    • Chu, D.1    Deshpande, A.2    Hellerstein, J.3    Hong, W.4
  • 3
    • 34247399599 scopus 로고    scopus 로고
    • Sdlip: A sensor network data and communications library for rapid and robust application development
    • Nashville, Tennessee, USA, Apr.
    • D. Chu, K. Lin, A. Linares, G. Nguyen, and J. Hellerstein. sdlip: A Sensor Network Data and Communications Library for Rapid and Robust Application Development. In IPSN, Nashville, Tennessee, USA, Apr. 2006.
    • (2006) IPSN
    • Chu, D.1    Lin, K.2    Linares, A.3    Nguyen, G.4    Hellerstein, J.5
  • 4
    • 2442576849 scopus 로고    scopus 로고
    • Approximate aggregation techniques for sensor databases
    • Boston, Massachusetts, USA, Mar.
    • J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggregation Techniques for Sensor Databases. In ICDE, Boston, Massachusetts, USA, Mar. 2004.
    • (2004) ICDE
    • Considine, J.1    Li, F.2    Kollios, G.3    Byers, J.4
  • 6
    • 3142661923 scopus 로고    scopus 로고
    • Compressing historical information in sensor networks
    • Paris, France, June
    • A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing Historical Information in Sensor Networks. In SIGMOD, Paris, France, June 2004.
    • (2004) SIGMOD
    • Deligiannakis, A.1    Kotidis, Y.2    Roussopoulos, N.3
  • 8
    • 28444450448 scopus 로고    scopus 로고
    • Exploiting correlated attributes in acquisitional query processing
    • Tokyo, Japan, Apr.
    • A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting Correlated Attributes in Acquisitional Query Processing. In ICDE, Tokyo, Japan, Apr. 2005.
    • (2005) ICDE
    • Deshpande, A.1    Guestrin, C.2    Hong, W.3    Madden, S.4
  • 9
    • 33745662761 scopus 로고    scopus 로고
    • Using probabilistic models for data management in acquisitional environments
    • Asilomar, California, USA, Jan.
    • A. Deshpande, C. Guestrin, and S. Madden. Using Probabilistic Models for Data Management in Acquisitional Environments. In CIDR, Asilomar, California, USA, Jan. 2005.
    • (2005) CIDR
    • Deshpande, A.1    Guestrin, C.2    Madden, S.3
  • 10
  • 11
    • 34247346862 scopus 로고    scopus 로고
    • MauveDB: Supporting modelbased user views in database systems
    • Chicago, Illinois, USA, June
    • A. Deshpande and S. Madden. MauveDB: Supporting Modelbased User Views in Database Systems. In SIGMOD, Chicago, Illinois, USA, June 2006.
    • (2006) SIGMOD
    • Deshpande, A.1    Madden, S.2
  • 13
    • 3042820611 scopus 로고    scopus 로고
    • Distributed regression: An efficient framework for modeling sensor network data
    • Berkeley, California, USA, Apr.
    • C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed Regression: an Efficient Framework for Modeling Sensor Network Data. In Proc. of the 2004 IPSN, Berkeley, California, USA, Apr. 2004.
    • (2004) Proc. of the 2004 IPSN
    • Guestrin, C.1    Bodik, P.2    Thibaux, R.3    Paskin, M.4    Madden, S.5
  • 15
    • 34247383892 scopus 로고    scopus 로고
    • Optimization of in-network data reduction
    • Toronto, Canada, Aug
    • J. Hellerstein and W. Wang. Optimization of in-network data reduction. In Proc. of the 2004, Toronto, Canada, Aug. 2004.
    • (2004) Proc. of the 2004
    • Hellerstein, J.1    Wang, W.2
  • 16
    • 27644499141 scopus 로고    scopus 로고
    • Mitigating congestion in wireless sensor networks
    • Baltimore, Maryland, USA, Nov.
    • B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating Congestion in Wireless Sensor Networks. In SENSYS, Baltimore, Maryland, USA, Nov. 2004.
    • (2004) SENSYS
    • Hull, B.1    Jamieson, K.2    Balakrishnan, H.3
  • 17
    • 3142770653 scopus 로고    scopus 로고
    • Adaptive stream resource management using kalman filters
    • Paris, France, June
    • A. Jain, E. Chang, and Y. Wang. Adaptive Stream Resource Management Using Kalman Filters. In SIGMOD, Paris, France, June 2004.
    • (2004) SIGMOD
    • Jain, A.1    Chang, E.2    Wang, Y.3
  • 21
    • 28444434729 scopus 로고    scopus 로고
    • Snapshot queries: Towards data-centric sensor networks
    • Tokyo, Japan, Apr
    • Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Networks. In ICDE, Tokyo, Japan, Apr. 2005.
    • (2005) ICDE
    • Kotidis, Y.1
  • 22
    • 3042779882 scopus 로고    scopus 로고
    • The impact of spatial correlation on routing with compression in wireless sensor networks
    • Berkeley, California, USA, Apr
    • S. Pattem, B. Krishnamachari, and R. Govindan. The Impact of Spatial Correlation on Routing with Compression in Wireless Sensor Networks. In IPSN, Berkeley, California, USA, Apr. 2004.
    • (2004) IPSN
    • Pattem, S.1    Krishnamachari, B.2    Govindan, R.3
  • 23
    • 34250676986 scopus 로고    scopus 로고
    • Constraint- chaining: On energy-efficient continuous monitoring in sensor networks
    • Chicago, Illinois, USA, June
    • A. Silberstein, R. Braynard, and J. Yang. Constraint- Chaining: On Energy-Efficient Continuous Monitoring in Sensor Networks. In SIGMOD, Chicago, Illinois, USA, June 2006.
    • (2006) SIGMOD
    • Silberstein, A.1    Braynard, R.2    Yang, J.3
  • 24
    • 34250670478 scopus 로고    scopus 로고
    • Energy-efficient monitoring of extreme values in sensor networks
    • Chicago, Illinois, USA, June
    • A. Silberstein, K. Munagala, and J. Yang. Energy-Efficient Monitoring of Extreme Values in Sensor Networks. In SIGMOD, Chicago, Illinois, USA, June 2006.
    • (2006) SIGMOD
    • Silberstein, A.1    Munagala, K.2    Yang, J.3
  • 25
    • 33750898056 scopus 로고    scopus 로고
    • PAQ: Time series forecasting for approximate query answering in sensor networks
    • Zurich, Switzerland, Feb.
    • D. Tulone and S. Madden. PAQ: Time Series Forecasting for Approximate Query Answering in Sensor Networks. In EWSN, Zurich, Switzerland, Feb. 2006.
    • (2006) EWSN
    • Tulone, D.1    Madden, S.2
  • 26
    • 18844378578 scopus 로고    scopus 로고
    • Taming the underlying challenges of reliable multihop routing in sensor networks
    • Los Angeles, California, USA, Nov.
    • A.Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks. In Proc. of the 2003 SENSYS, Los Angeles, California, USA, Nov. 2003.
    • (2003) Proc. of the 2003 SENSYS
    • Woo, A.1    Tong, T.2    Culler, D.3
  • 27
    • 18844411823 scopus 로고    scopus 로고
    • Understanding packet delivery performance in densewireless sensor networks
    • Los Angeles, California, USA, Nov.
    • J. Zhao and R. Govindan. Understanding Packet Delivery Performance in DenseWireless Sensor Networks. In Proc. of the 2003 SENSYS, Los Angeles, California, USA, Nov. 2003.
    • (2003) Proc. of the 2003 SENSYS
    • Zhao, J.1    Govindan, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.