메뉴 건너뛰기




Volumn 75, Issue 5, 2014, Pages 324-330

Introduction to RNA-seq and its applications to drug discovery and development

Author keywords

drug resistance; fusion protein; microarray; miRNA; next generation sequencing; RNA Seq

Indexed keywords

MICRORNA; TRANSCRIPTOME;

EID: 84906655629     PISSN: 02724391     EISSN: 10982299     Source Type: Journal    
DOI: 10.1002/ddr.21215     Document Type: Review
Times cited : (44)

References (34)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W,. 2010. Differential expression analysis for sequence count data. Genome Biol 11: R106.
    • (2010) Genome Biol , vol.11
    • Anders, S.1    Huber, W.2
  • 2
    • 84857218267 scopus 로고    scopus 로고
    • Differential expression - The next generation and beyond
    • Auer PL, Srivastava S, Doerge RW,. 2012. Differential expression-the next generation and beyond. Brief Funct Genomics 11: 57-62.
    • (2012) Brief Funct Genomics , vol.11 , pp. 57-62
    • Auer, P.L.1    Srivastava, S.2    Doerge, R.W.3
  • 3
    • 0035023305 scopus 로고    scopus 로고
    • Comparative gene expression profiles following UV exposure in wild type and SOS-deficient Escherichia coli
    • Courcelle J, Khodursky A, Peter B, Brown P, Hanawalt P,. 2001. Comparative gene expression profiles following UV exposure in wild type and SOS-deficient Escherichia coli. Genetics 158: 41-64.
    • (2001) Genetics , vol.158 , pp. 41-64
    • Courcelle, J.1    Khodursky, A.2    Peter, B.3    Brown, P.4    Hanawalt, P.5
  • 7
    • 34250760229 scopus 로고    scopus 로고
    • On the generalized poisson regression model with an application to accidental data
    • Famoye F, Wulu J, Singh KP,. 2004. On the generalized poisson regression model with an application to accidental data. J Data Sci 2: 287-295.
    • (2004) J Data Sci , vol.2 , pp. 287-295
    • Famoye, F.1    Wulu, J.2    Singh, K.P.3
  • 8
    • 79957842166 scopus 로고    scopus 로고
    • Computational methods for transcriptome annotation and quantification using RNA-seq
    • Garber M, Grabherr MG, Guttman M, Trapnell C,. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8: 469-477.
    • (2011) Nat Methods , vol.8 , pp. 469-477
    • Garber, M.1    Grabherr, M.G.2    Guttman, M.3    Trapnell, C.4
  • 9
    • 79960126958 scopus 로고    scopus 로고
    • FusionMap: Detecting fusion genes from next-generation sequencing data at base-pair resolution
    • Ge H, Liu K, Juan T, Fang F, Newman M, Hoeck W,. 2011. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics 27: 1922-1928.
    • (2011) Bioinformatics , vol.27 , pp. 1922-1928
    • Ge, H.1    Liu, K.2    Juan, T.3    Fang, F.4    Newman, M.5    Hoeck, W.6
  • 10
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA,. 2010. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 11
    • 80054003528 scopus 로고    scopus 로고
    • ChimeraScan: A tool for identifying chimeric transcription in sequencing data
    • Iyer MK, Chinnaiyan AM, Maher CA,. 2011. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27: 2903-2904.
    • (2011) Bioinformatics , vol.27 , pp. 2903-2904
    • Iyer, M.K.1    Chinnaiyan, A.M.2    Maher, C.A.3
  • 13
    • 80051507403 scopus 로고    scopus 로고
    • TopHat-Fusion: An algorithm for discovery of novel fusion transcripts
    • Kim D, Salzberg SL,. 2011. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12: R72.
    • (2011) Genome Biol , vol.12
    • Kim, D.1    Salzberg, S.L.2
  • 14
    • 84884684764 scopus 로고    scopus 로고
    • Insight into norfloxacin resistance of Acinetobacter oleivorans DR1: Target gene mutation, persister, and RNA-Seq analyses
    • Kim J, Noh J, Park W,. 2013. Insight into norfloxacin resistance of Acinetobacter oleivorans DR1: target gene mutation, persister, and RNA-Seq analyses. J Microbiol Biotechnol 23: 1293-1303.
    • (2013) J Microbiol Biotechnol , vol.23 , pp. 1293-1303
    • Kim, J.1    Noh, J.2    Park, W.3
  • 16
    • 84878893929 scopus 로고    scopus 로고
    • FusionQ: A novel approach for gene fusion detection and quantification from paired-end RNA-Seq
    • Liu C, Ma J, Chang CJ, Zhou X,. 2013. FusionQ: a novel approach for gene fusion detection and quantification from paired-end RNA-Seq. BMC Bioinformatics 14: 193.
    • (2013) BMC Bioinformatics , vol.14 , pp. 193
    • Liu, C.1    Ma, J.2    Chang, C.J.3    Zhou, X.4
  • 20
    • 84890434867 scopus 로고    scopus 로고
    • Transcriptomic analysis by RNA-seq reveals AP-1 pathway as key regulator that green tea may rely on to inhibit lung tumorigenesis
    • Pan J, Zhang Q, Xiong D, Vedell P, Yan Y, Jiang H, Cui P, Ding F, Tichelaar JW, Wang Y, et al. 2014. Transcriptomic analysis by RNA-seq reveals AP-1 pathway as key regulator that green tea may rely on to inhibit lung tumorigenesis. Mol Carcinog 53: 19-29.
    • (2014) Mol Carcinog , vol.53 , pp. 19-29
    • Pan, J.1    Zhang, Q.2    Xiong, D.3    Vedell, P.4    Yan, Y.5    Jiang, H.6    Cui, P.7    Ding, F.8    Tichelaar, J.W.9    Wang, Y.10
  • 21
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan W,. 2002. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18: 546-554.
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 22
    • 60349098756 scopus 로고    scopus 로고
    • Assumption adequacy averaging as a concept to develop more robust methods for differential gene expression analysis
    • Pounds S, Rai SN,. 2009. Assumption adequacy averaging as a concept to develop more robust methods for differential gene expression analysis. Comput Stat Data Anal 53: 1604-1612.
    • (2009) Comput Stat Data Anal , vol.53 , pp. 1604-1612
    • Pounds, S.1    Rai, S.N.2
  • 23
    • 84879241018 scopus 로고    scopus 로고
    • Empirical bayesian selection of hypothesis testing procedures for analysis of sequence count expression data
    • Pounds SB, Gao CL, Zhang H,. 2012. Empirical bayesian selection of hypothesis testing procedures for analysis of sequence count expression data. Stat Appl Genet Mol Biol 11: 1544-6115.
    • (2012) Stat Appl Genet Mol Biol , vol.11 , pp. 1544-6115
    • Pounds, S.B.1    Gao, C.L.2    Zhang, H.3
  • 24
    • 84875451981 scopus 로고    scopus 로고
    • Development of strategies for SNP detection in RNA-seq data: Application to lymphoblastoid cell lines and evaluation using 1000 Genomes data
    • Quinn EM, Cormican P, Kenny EM, Hill M, Anney R, Gill M, Corvin AP, Morris DW,. 2013. Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 Genomes data. PLoS ONE 8: e58815.
    • (2013) PLoS ONE , vol.8
    • Quinn, E.M.1    Cormican, P.2    Kenny, E.M.3    Hill, M.4    Anney, R.5    Gill, M.6    Corvin, A.P.7    Morris, D.W.8
  • 25
    • 84862777104 scopus 로고    scopus 로고
    • RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings
    • Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X, Cui Z, Zhang J, Yi K, Xu W, et al. 2012. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res 22: 806-821.
    • (2012) Cell Res , vol.22 , pp. 806-821
    • Ren, S.1    Peng, Z.2    Mao, J.H.3    Yu, Y.4    Yin, C.5    Gao, X.6    Cui, Z.7    Zhang, J.8    Yi, K.9    Xu, W.10
  • 26
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • Robinson MD, Smyth GK,. 2008. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9: 321-332.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 27
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK,. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 28
    • 85052549687 scopus 로고    scopus 로고
    • A two-parameter generalized Poisson model to improve the analysis of RNA-seq data
    • Srivastava S, Chen L,. 2010. A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Res 38: e170.
    • (2010) Nucleic Acids Res , vol.38
    • Srivastava, S.1    Chen, L.2
  • 29
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M,. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57-63.
    • (2009) Nat Rev Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 30
    • 77957969261 scopus 로고    scopus 로고
    • Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance
    • Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, Sarkar FH,. 2010. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Update 13: 109-118.
    • (2010) Drug Resist Update , vol.13 , pp. 109-118
    • Wang, Z.1    Li, Y.2    Ahmad, A.3    Azmi, A.S.4    Kong, D.5    Banerjee, S.6    Sarkar, F.H.7
  • 31
    • 84896718888 scopus 로고    scopus 로고
    • Changes in the expression of miR-381 and miR-495 are inversely associated with the expression of the MDR1 gene and development of multi-drug resistance
    • Xu Y, Ohms SJ, Li Z, Wang Q, Gong G, Hu Y, Mao Z, Shannon MF, Fan JY,. 2013. Changes in the expression of miR-381 and miR-495 are inversely associated with the expression of the MDR1 gene and development of multi-drug resistance. PLoS ONE 8: e82062.
    • (2013) PLoS ONE , vol.8
    • Xu, Y.1    Ohms, S.J.2    Li, Z.3    Wang, Q.4    Gong, G.5    Hu, Y.6    Mao, Z.7    Shannon, M.F.8    Fan, J.Y.9
  • 32
    • 84894254382 scopus 로고    scopus 로고
    • Abnormal gene expression and gene fusion in lung adenocarcinoma with high-throughput RNA sequencing
    • Yang ZH, Zheng R, Gao Y, Zhang Q, Zhang H,. 2014. Abnormal gene expression and gene fusion in lung adenocarcinoma with high-throughput RNA sequencing. Cancer Gene Ther 21: 74-82.
    • (2014) Cancer Gene Ther , vol.21 , pp. 74-82
    • Yang, Z.H.1    Zheng, R.2    Gao, Y.3    Zhang, Q.4    Zhang, H.5
  • 33
    • 84864631640 scopus 로고    scopus 로고
    • A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses
    • Zhang H, Yu Q, Feng C, Gunzler D, Wu P, Tu XM,. 2012. A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses. J Appl Stat 39: 2067-2079.
    • (2012) J Appl Stat , vol.39 , pp. 2067-2079
    • Zhang, H.1    Yu, Q.2    Feng, C.3    Gunzler, D.4    Wu, P.5    Tu, X.M.6
  • 34
    • 84872852142 scopus 로고    scopus 로고
    • Genome-wide analysis of miRNA signature differentially expressed in doxorubicin-resistant and parental human hepatocellular carcinoma cell lines
    • Zhang J, Wang Y, Zhen P, Luo X, Zhang C, Zhou L, Lu Y, Yang Y, Zhang W, Wan J,. 2013. Genome-wide analysis of miRNA signature differentially expressed in doxorubicin-resistant and parental human hepatocellular carcinoma cell lines. PLoS ONE 8: e54111.
    • (2013) PLoS ONE , vol.8
    • Zhang, J.1    Wang, Y.2    Zhen, P.3    Luo, X.4    Zhang, C.5    Zhou, L.6    Lu, Y.7    Yang, Y.8    Zhang, W.9    Wan, J.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.