메뉴 건너뛰기




Volumn 39, Issue 9, 2012, Pages 2067-2079

A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses

Author keywords

generalized estimating equations; generalized linear mixed effect model; hotelling's T 2 statistic; likelihood ratio test; score test

Indexed keywords


EID: 84864631640     PISSN: 02664763     EISSN: 13600532     Source Type: Journal    
DOI: 10.1080/02664763.2012.700452     Document Type: Article
Times cited : (32)

References (37)
  • 2
    • 21144470086 scopus 로고
    • On generalized score tests
    • Boos, D. D. 1992. On generalized score tests. Amer. Statist., 46: 327-333.
    • (1992) Amer. Statist. , vol.46 , pp. 327-333
    • Boos, D.D.1
  • 3
    • 0033473746 scopus 로고    scopus 로고
    • A comparison of population average and random effects models for the analysis of longitudinal count data with baseline information
    • Crouchley, R. and Davies, R. B. 1999. A comparison of population average and random effects models for the analysis of longitudinal count data with baseline information. J. R. Stat. Soc. A, 162: 331-347.
    • (1999) J. R. Stat. Soc. A , vol.162 , pp. 331-347
    • Crouchley, R.1    Davies, R.B.2
  • 4
    • 0000447977 scopus 로고
    • The nonlinear mixed effects model with a smooth random effects density
    • Davidian, M. and Gallant, R. A. 1993. The nonlinear mixed effects model with a smooth random effects density. Biometrika, 80: 475-488.
    • (1993) Biometrika , vol.80 , pp. 475-488
    • Davidian, M.1    Gallant, R.A.2
  • 7
    • 0034360861 scopus 로고    scopus 로고
    • Bayesian latent variable models for clustered mixed outcomes
    • Dunson, D. B. 2000. Bayesian latent variable models for clustered mixed outcomes. J. R. Stat. Soc. B, 62: 335-366.
    • (2000) J. R. Stat. Soc. B , vol.62 , pp. 335-366
    • Dunson, D.B.1
  • 8
    • 0242595643 scopus 로고    scopus 로고
    • Dynamic latent trait models for multidimensional longitudinal data
    • Dunson, D. B. 2003. Dynamic latent trait models for multidimensional longitudinal data. J. Amer. Statist. Assoc., 98: 555-563.
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 555-563
    • Dunson, D.B.1
  • 9
    • 21644435901 scopus 로고    scopus 로고
    • Bayesian latent variable models for mixed discrete outcomes
    • Dunson, D. B. and Herring, A. H. 2005. Bayesian latent variable models for mixed discrete outcomes. Biostatistics, 6: 11-25.
    • (2005) Biostatistics , vol.6 , pp. 11-25
    • Dunson, D.B.1    Herring, A.H.2
  • 10
    • 0029061272 scopus 로고
    • A caveat concerning independence estimating equations with multivariate binary data
    • Fitzmaurice, G. M. 1995. A caveat concerning independence estimating equations with multivariate binary data. Biometrics, 51: 309-317.
    • (1995) Biometrics , vol.51 , pp. 309-317
    • Fitzmaurice, G.M.1
  • 13
    • 0030439435 scopus 로고    scopus 로고
    • A non-linear mixed-effects model to predict cumulative bole volume of standing trees
    • Gregoire, T. G. and Schabenberger, O. 1996. A non-linear mixed-effects model to predict cumulative bole volume of standing trees. J. Appl. Stat., 23(2&3): 257-271.
    • (1996) J. Appl. Stat. , vol.23 , Issue.2-3 , pp. 257-271
    • Gregoire, T.G.1    Schabenberger, O.2
  • 14
    • 27844466696 scopus 로고    scopus 로고
    • Small-sample performance of the robust score test and its modifications in generalized estimating equation statistics
    • Guo, X., Pan, W., Connett, J. E., Hannan, P. T. and French, S. A. 2005. Small-sample performance of the robust score test and its modifications in generalized estimating equation statistics. Stat. Med., 24: 3479-3495.
    • (2005) Stat. Med. , vol.24 , pp. 3479-3495
    • Guo, X.1    Pan, W.2    Connett, J.E.3    Hannan, P.T.4    French, S.A.5
  • 17
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y. and Zeger, S. L. 1986. Longitudinal data analysis using generalized linear models. Biometrika, 73: 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 18
    • 0025170004 scopus 로고
    • Nonlinear mixed effects models for repeated measures data
    • Lindstrom, M. J. and Bates, D. M. 1990. Nonlinear mixed effects models for repeated measures data. Biometrika, 46: 673-687.
    • (1990) Biometrika , vol.46 , pp. 673-687
    • Lindstrom, M.J.1    Bates, D.M.2
  • 19
    • 0026645445 scopus 로고
    • Efficacy of repeated measures in regression models with measurement error
    • Liu, X. and Liang, K. Y. 1992. Efficacy of repeated measures in regression models with measurement error. Biometrics, 48: 645-654.
    • (1992) Biometrics , vol.48 , pp. 645-654
    • Liu, X.1    Liang, K.Y.2
  • 20
    • 49749101625 scopus 로고    scopus 로고
    • Inference for kappas for longitudinal study data: Applications to sexual health research
    • Ma, Y., Tang, W., Feng, C. and Tu, X. M. 2008. Inference for kappas for longitudinal study data: Applications to sexual health research. Biometrics, 64: 781-789.
    • (2008) Biometrics , vol.64 , pp. 781-789
    • Ma, Y.1    Tang, W.2    Feng, C.3    Tu, X.M.4
  • 23
    • 77956889208 scopus 로고
    • Recovery of inter-block information when block sizes are unequal
    • Patterson, H. D. and Thompson, R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika, 58: 545-554.
    • (1971) Biometrika , vol.58 , pp. 545-554
    • Patterson, H.D.1    Thompson, R.2
  • 24
    • 84963132941 scopus 로고
    • A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data
    • Pepe, M. S. and Anderson, G. A. 1994. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Comm. Statist. Simulation Comput., 23: 939-951.
    • (1994) Comm. Statist. Simulation Comput. , vol.23 , pp. 939-951
    • Pepe, M.S.1    Anderson, G.A.2
  • 25
    • 0024266392 scopus 로고
    • Correlated binary regression with covariates specific to each binary observation
    • Prentice, R. L. 1988. Correlated binary regression with covariates specific to each binary observation. Biometrics, 44: 321-327.
    • (1988) Biometrics , vol.44 , pp. 321-327
    • Prentice, R.L.1
  • 26
    • 0026010582 scopus 로고
    • Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses
    • Prentice, R. L. and Zhao, L. P. 1991. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47: 825-839.
    • (1991) Biometrics , vol.47 , pp. 825-839
    • Prentice, R.L.1    Zhao, L.P.2
  • 27
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. 2008. R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing.
    • (2008) R: A Language and Environment for Statistical Computing
  • 28
    • 4344671893 scopus 로고    scopus 로고
    • Equivalence of conditional and marginal regression models for clustered and longitudinal data
    • Ritz, J. and Spiegelman, D. 2004. Equivalence of conditional and marginal regression models for clustered and longitudinal data. Stat. Methods Med. Res., 13: 309-323.
    • (2004) Stat. Methods Med. Res. , vol.13 , pp. 309-323
    • Ritz, J.1    Spiegelman, D.2
  • 29
    • 0000426001 scopus 로고
    • Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data
    • Rotnitzky, A. and Jewell, N. P. 1990. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika, 77: 485-497.
    • (1990) Biometrika , vol.77 , pp. 485-497
    • Rotnitzky, A.1    Jewell, N.P.2
  • 30
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. 1976. Inference and missing data. Biometrika, 63: 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 34
    • 34247505532 scopus 로고    scopus 로고
    • Comparison of subject-specific and population averaged models for count data from cluster-unit intervention trials
    • Young, M. L., Preisser, J. S. and Qaqish, B. F. 2007. Comparison of subject-specific and population averaged models for count data from cluster-unit intervention trials. Stat. Methods Med. Res., 16: 167-184.
    • (2007) Stat. Methods Med. Res. , vol.16 , pp. 167-184
    • Young, M.L.1    Preisser, J.S.2    Qaqish, B.F.3
  • 35
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • Zeger, S. L. and Liang, K. Y. 1986. Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42: 121-130.
    • (1986) Biometrics , vol.42 , pp. 121-130
    • Zeger, S.L.1    Liang, K.Y.2
  • 36
    • 0024205301 scopus 로고
    • Models for longitudinal data: A generalized estimating equations approach
    • Zeger, S. L., Liang, K. Y. and Albert, P. S. 1988. Models for longitudinal data: A generalized estimating equations approach. Biometrics, 44: 1049-1060.
    • (1988) Biometrics , vol.44 , pp. 1049-1060
    • Zeger, S.L.1    Liang, K.Y.2    Albert, P.S.3
  • 37
    • 80051792409 scopus 로고    scopus 로고
    • On fitting generalized linear mixed-effects models for binary responses using different statistical packages
    • doi: 10.1002/sim.4265
    • Zhang, H., Lu, N., Feng, C., Thurston, S., Xia, Y., Zhu, L. and Tu, X. M. 2011. On fitting generalized linear mixed-effects models for binary responses using different statistical packages. Stat. Med., 30: 2562-2572. doi: 10.1002/sim.4265
    • (2011) Stat. Med. , vol.30 , pp. 2562-2572
    • Zhang, H.1    Lu, N.2    Feng, C.3    Thurston, S.4    Xia, Y.5    Zhu, L.6    Tu, X.M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.