메뉴 건너뛰기




Volumn 11, Issue 5, 2012, Pages

Empirical Bayesian selection of hypothesis testing procedures for analysis of sequence count expression data

Author keywords

Differential expression; Empirical bayes; False discovery rate; MRNA seq data; Multiple testing; Sequence count expression data

Indexed keywords

ARTICLE; EMPIRICAL BAYESIAN PROBABILITY; GENE EXPRESSION; GENE SEQUENCE; GENETICS; NULL HYPOTHESIS; POISSON DISTRIBUTION; SEQUENCE ALIGNMENT; STATISTICAL CONCEPTS; STATISTICAL SIGNIFICANCE; BAYES THEOREM; DNA MICROARRAY; FACTUAL DATABASE; GENE EXPRESSION PROFILING; METHODOLOGY;

EID: 84879241018     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.1515/1544-6115.1773     Document Type: Article
Times cited : (13)

References (36)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W (2010). Differential expression analysis for sequence count data. Genome Biology 11: R106.
    • (2010) Genome Biology , vol.11
    • Anders, S.1    Huber, W.2
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini YB, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289-300.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.B.1    Hochberg, Y.2
  • 4
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, et al. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1
  • 5
    • 26444564509 scopus 로고    scopus 로고
    • Significance threshold selection criteria for massive multiple comparisons with applications to DNA microarray experiments
    • Cheng C, et al. (2004). Significance Threshold Selection Criteria for Massive Multiple Comparisons with Applications to DNA Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 3: 36.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , pp. 36
    • Cheng, C.1
  • 7
    • 0040606893 scopus 로고
    • Testing for overdispersion in Poisson and Binomial regression models
    • Dean CB (1992). Testing for overdispersion in Poisson and Binomial regression models. Journal of the American Statistical Association 87: 451-457.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 451-457
    • Dean, C.B.1
  • 8
    • 0003193893 scopus 로고    scopus 로고
    • Half-normal plots and overdispersion
    • Demetrio, C. and Hinde J. (1997). Half-normal plots and overdispersion. GLIM Newsletter 27: 19-26.
    • (1997) GLIM Newsletter , vol.27 , pp. 19-26
    • Demetrio, C.1    Hinde, J.2
  • 10
    • 2142732441 scopus 로고    scopus 로고
    • Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis
    • Efron B (2004). Large-Scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of the American Statistical Association 99: 96-104. (Pubitemid 38545197)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.465 , pp. 96-104
    • Efron, B.1
  • 12
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA (2010). baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 13
    • 84055216924 scopus 로고    scopus 로고
    • Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation
    • Li J.J., et al. (2011). Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proceedings of the National Academies of Sciences (USA) 108: 19867-19872.
    • (2011) Proceedings of the National Academies of Sciences (USA) , vol.108 , pp. 19867-19872
    • Li, J.J.1
  • 14
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • DOI 10.1038/nmeth.1226, PII NMETH.1226
    • Mortazavi A, et al. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 7: 621-8. (Pubitemid 351911867)
    • (2008) Nature Methods , vol.5 , Issue.7 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3    Schaeffer, L.4    Wold, B.5
  • 15
    • 0035047910 scopus 로고    scopus 로고
    • A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion
    • Mosig MO, et al. (2001). Whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion. Genetics 157:1683-1698. (Pubitemid 32298836)
    • (2001) Genetics , vol.157 , Issue.4 , pp. 1683-1698
    • Mosig, M.O.1    Lipkin, E.2    Khutoreskaya, G.3    Tchourzyna, E.4    Soller, M.5    Friedmann, A.6
  • 17
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack A, Robinson MD, and Young MD (2010). From RNA-seq reads to differential expression results. Genome Biology 11: 220.
    • (2010) Genome Biology , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 18
    • 33747840464 scopus 로고    scopus 로고
    • Estimation and control of multiple testing error rates for microarray studies
    • DOI 10.1093/bib/bbk002, The Comparative and Functional Genomics (BITS) Workshop
    • Pounds S (2006). Estimation and control of multiple testing error rates for the analysis of microarray data. Briefings in Bioinformatics 7: 25-36. (Pubitemid 44404321)
    • (2006) Briefings in Bioinformatics , vol.7 , Issue.1 , pp. 25-36
    • Pounds, S.B.1
  • 19
    • 33747828250 scopus 로고    scopus 로고
    • Robust estimation of the false discovery rate
    • DOI 10.1093/bioinformatics/btl328
    • Pounds S, Cheng C (2006). Robust estimation of the false discovery rate. Bioinformatics 22: 1979-1987. (Pubitemid 44283010)
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1979-1987
    • Pounds, S.1    Cheng, C.2
  • 20
    • 18844447998 scopus 로고    scopus 로고
    • Statistical development and evaluation of microarray gene expression data filters
    • DOI 10.1089/cmb.2005.12.482
    • Pounds S, Cheng C (2005a). Statistical development and evaluation of gene expression data filters. Journal of Computational Biology 12: 482-495. (Pubitemid 40696483)
    • (2005) Journal of Computational Biology , vol.12 , Issue.4 , pp. 482-495
    • Pounds, S.1    Cheng, C.2
  • 21
    • 28444492997 scopus 로고    scopus 로고
    • Sample size determination for the false discovery rate
    • DOI 10.1093/bioinformatics/bti699
    • Pounds S, Cheng C (2005b). Sample size determination for the false discovery rate. Bioinformatics 21: 4263-71. (Pubitemid 41724306)
    • (2005) Bioinformatics , vol.21 , Issue.23 , pp. 4263-4271
    • Pounds, S.1    Cheng, C.2
  • 22
    • 68549094582 scopus 로고    scopus 로고
    • PROMISE: A Tool to identify genomic variables with a specific biologically interesting pattern of associations with multiple endpoint variables
    • Pounds S, et al. (2009). PROMISE: A Tool to Identify Genomic Variables with a Specific Biologically Interesting Pattern of Associations with Multiple Endpoint Variables. Bioinformatics 25: 2013-2019.
    • (2009) Bioinformatics , vol.25 , pp. 2013-2019
    • Pounds, S.1
  • 23
    • 0038156106 scopus 로고    scopus 로고
    • Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values
    • DOI 10.1093/bioinformatics/btg148
    • Pounds S, Morris S (2003). Estimating the occurrence of false positives and false negatives in Microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19: 1236-1242. (Pubitemid 36850216)
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1236-1242
    • Pounds, S.1    Morris, S.W.2
  • 24
    • 60349098756 scopus 로고    scopus 로고
    • Assumption adequacy averaging as a concept to develop more robust methods for differential gene expression analysis
    • Pounds S, Rai SN. (2009). Assumption adequacy averaging as a concept to develop more robust methods for differential gene expression analysis. Computational Statistics and Data Analysis 53: 1604-1612.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 1604-1612
    • Pounds, S.1    Rai, S.N.2
  • 25
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 26
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD and Oshlack (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11:25.
    • (2010) Genome Biology , vol.11 , pp. 25
    • Robinson, M.D.1    Oshlack2
  • 27
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • DOI 10.1093/bioinformatics/btm453
    • Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23: 2881-2887. (Pubitemid 350162894)
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 28
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • DOI 10.1093/biostatistics/kxm030
    • Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9: 321-332. (Pubitemid 351438556)
    • (2008) Biostatistics , vol.9 , Issue.2 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 30
    • 0000898845 scopus 로고
    • An analysis of variance test for normality (complete samples)
    • Shapiro SS, Wilk MB (1965). An analysis of variance test for normality (complete samples). Biometrika 52: 591-611.
    • (1965) Biometrika , vol.52 , pp. 591-611
    • Shapiro, S.S.1    Wilk, M.B.2
  • 31
    • 57149085481 scopus 로고    scopus 로고
    • Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms
    • tHoen, PAC, et al. (2008). Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research, 36: e141.
    • (2008) Nucleic Acids Research , vol.36
    • Thoen, P.A.C.1
  • 32
    • 66149192669 scopus 로고    scopus 로고
    • How to map billions of short reads onto genomes
    • Trapnell, C and Salzberg, SL (2009). How to map billions of short reads onto genomes. Nature Biotechnology, 27: 455-457.
    • (2009) Nature Biotechnology , vol.27 , pp. 455-457
    • Trapnell, C.1    Salzberg, S.L.2
  • 33
    • 0028789793 scopus 로고
    • Serial analysis of gene expression
    • Velculescu, VE et al. (1995). Serial analysis of gene expression. Science 270: 484-487.
    • (1995) Science , vol.270 , pp. 484-487
    • Velculescu, V.E.1
  • 34
    • 0016335739 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • Wedderburn RWM (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61: 439-47.
    • (1974) Biometrika , vol.61 , pp. 439-447
    • Wedderburn, R.W.M.1
  • 35
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. (1945). Individual comparisons by ranking methods. Biometrika, 1:80-83.
    • (1945) Biometrika , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 36
    • 0002174694 scopus 로고
    • Applications of the theory of error to the interpretation of trends
    • Working H, Hotelling H (1929): Applications of the theory of error to the interpretation of trends. Journal of the American Statistical Association, 24 Supplement, 73-85.
    • (1929) Journal of the American Statistical Association , vol.24 , Issue.SUPPL. , pp. 73-85
    • Working, H.1    Hotelling, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.