메뉴 건너뛰기




Volumn 8691 LNCS, Issue PART 3, 2014, Pages 675-688

Recognizing complex events in videos by learning key static-dynamic evidences

Author keywords

ADMM; Infinite Push; Key Evidence Selection; Video Event Detection

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; OPTIMIZATION;

EID: 84906508190     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-10578-9_44     Document Type: Conference Paper
Times cited : (24)

References (25)
  • 1
    • 84880083510 scopus 로고    scopus 로고
    • The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
    • Society for Industrial and Applied Mathematics
    • Agarwal, S.: The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In: SDM, pp. 839-850. Society for Industrial and Applied Mathematics (2011)
    • (2011) SDM , pp. 839-850
    • Agarwal, S.1
  • 2
    • 84899732670 scopus 로고    scopus 로고
    • Minimally needed evidence for complex event recognition in unconstrained videos
    • Bhattacharya, S., Yu, F.X., Chang, S.F.: Minimally needed evidence for complex event recognition in unconstrained videos. In: ICMR (2014)
    • (2014) ICMR
    • Bhattacharya, S.1    Yu, F.X.2    Chang, S.F.3
  • 3
    • 84867850412 scopus 로고    scopus 로고
    • Scene aligned pooling for complex video recognition
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. Springer, Heidelberg
    • Cao, L., Mu, Y., Natsev, A., Chang, S.-F., Hua, G., Smith, J.R.: Scene aligned pooling for complex video recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 688-701. Springer, Heidelberg (2012)
    • (2012) LNCS , vol.7573 , pp. 688-701
    • Cao, L.1    Mu, Y.2    Natsev, A.3    Chang, S.-F.4    Hua, G.5    Smith, J.R.6
  • 4
    • 33947180489 scopus 로고    scopus 로고
    • Miles: Multiple-instance learning via embedded instance selection
    • Chen, Y., Bi, J., Wang, J.Z.: Miles: Multiple-instance learning via embedded instance selection. PAMI 28(12), 1931-1947 (2006)
    • (2006) PAMI , vol.28 , Issue.12 , pp. 1931-1947
    • Chen, Y.1    Bi, J.2    Wang, J.Z.3
  • 5
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1), 31-71 (1997)
    • (1997) Artificial Intelligence , vol.89 , Issue.1 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 6
    • 78149348487 scopus 로고    scopus 로고
    • Object, scene and actions: Combining multiple features for human action recognition
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. Springer, Heidelberg
    • Ikizler-Cinbis, N., Sclaroff, S.: Object, scene and actions: Combining multiple features for human action recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 494-507. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6311 , pp. 494-507
    • Ikizler-Cinbis, N.1    Sclaroff, S.2
  • 8
    • 84885476437 scopus 로고    scopus 로고
    • High-level event recognition in unconstrained videos
    • Jiang, Y.G., Bhattacharya, S., Chang, S.F., Shah, M.: High-level event recognition in unconstrained videos. IJMIR, 1-29 (2012)
    • (2012) IJMIR , pp. 1-29
    • Jiang, Y.G.1    Bhattacharya, S.2    Chang, S.F.3    Shah, M.4
  • 9
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • ACM
    • Joachims, T.: Optimizing search engines using clickthrough data. In: SIGKDD, pp. 133-142. ACM (2002)
    • (2002) SIGKDD , pp. 133-142
    • Joachims, T.1
  • 10
    • 84898811014 scopus 로고    scopus 로고
    • Dynamic pooling for complex event recognition
    • Li, W., Yu, Q., Divakaran, A., Vasconcelos, N.: Dynamic pooling for complex event recognition. In: ICCV (2013)
    • (2013) ICCV
    • Li, W.1    Yu, Q.2    Divakaran, A.3    Vasconcelos, N.4
  • 11
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91-110 (2004)
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 13
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. Springer, Heidelberg
    • Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392-405. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6312 , pp. 392-405
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 14
    • 84898791167 scopus 로고    scopus 로고
    • Action and event recognition with fisher vectors on a compact feature set
    • Oneata, D., Verbeek, J., Schmid, C.: Action and event recognition with fisher vectors on a compact feature set. In: ICCV, pp. 1817-1824 (2013)
    • (2013) ICCV , pp. 1817-1824
    • Oneata, D.1    Verbeek, J.2    Schmid, C.3
  • 17
    • 84867122531 scopus 로고    scopus 로고
    • Sparse support vector infinite push
    • Rakotomamonjy, A.: Sparse support vector infinite push. In: ICML (2012)
    • (2012) ICML
    • Rakotomamonjy, A.1
  • 18
    • 70450239631 scopus 로고    scopus 로고
    • The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list
    • Rudin, C.: The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. JMLR 10, 2233-2271 (2009)
    • (2009) JMLR , vol.10 , pp. 2233-2271
    • Rudin, C.1
  • 20
    • 84866707906 scopus 로고    scopus 로고
    • Evaluation of low-level features and their combinations for complex event detection in open source videos
    • Tamrakar, A., Ali, S., Yu, Q., Liu, J., Javed, O., Divakaran, A., Cheng, H., Sawhney, H.: Evaluation of low-level features and their combinations for complex event detection in open source videos. In: CVPR (2012)
    • (2012) CVPR
    • Tamrakar, A.1    Ali, S.2    Yu, Q.3    Liu, J.4    Javed, O.5    Divakaran, A.6    Cheng, H.7    Sawhney, H.8
  • 21
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex event detection. In: CVPR (2012)
    • (2012) CVPR
    • Tang, K.1    Fei-Fei, L.2    Koller, D.3
  • 22
    • 84898817119 scopus 로고    scopus 로고
    • Compositional models for video event detection: A multiple kernel learning latent variable approach
    • Vahdat, A., Cannons, K., Mori, G., Oh, S., Kim, I.: Compositional models for video event detection: A multiple kernel learning latent variable approach. In: ICCV, pp. 1185-1192 (2013)
    • (2013) ICCV , pp. 1185-1192
    • Vahdat, A.1    Cannons, K.2    Mori, G.3    Oh, S.4    Kim, I.5
  • 24
    • 80052877143 scopus 로고    scopus 로고
    • Action recognition by dense trajectories
    • Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR (2011)
    • (2011) CVPR
    • Wang, H.1    Klaser, A.2    Schmid, C.3    Liu, C.L.4
  • 25
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. IJCV, 1-20 (2013)
    • (2013) IJCV , pp. 1-20
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.