메뉴 건너뛰기




Volumn 4, Issue 4, 2014, Pages 313-326

Active learning with support vector machines

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING ALGORITHMS;

EID: 84906504171     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1132     Document Type: Article
Times cited : (133)

References (50)
  • 1
    • 84875684423 scopus 로고    scopus 로고
    • A novel active learning method for support vector regression to estimate biophysical parameters from remotely sensed images
    • Bruzzone L, ed., International Society for Optics and Photonics, 85370L, Edinburgh, UK
    • Demir B, Bruzzone L. A novel active learning method for support vector regression to estimate biophysical parameters from remotely sensed images. In: Bruzzone L, ed. Proceedings of SPIE 8537, Image and Signal Processing for Remote Sensing XVIII, volume 8537, International Society for Optics and Photonics, 85370L, Edinburgh, UK; 2012.
    • (2012) Proceedings of SPIE 8537, Image and Signal Processing for Remote Sensing XVIII , vol.8537
    • Demir, B.1    Bruzzone, L.2
  • 4
    • 84873596567 scopus 로고    scopus 로고
    • San Rafael, CA: Morgan & Claypool
    • Settles B. Active Learning. San Rafael, CA: Morgan & Claypool; 2012.
    • (2012) Active Learning
    • Settles, B.1
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995, 20:273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N. Theory of reproducing kernels. Trans Am Math Soc 1950, 68:337-404.
    • (1950) Trans Am Math Soc , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 19
    • 0000531852 scopus 로고
    • Generalization as search
    • Mitchell TM. Generalization as search. Artif Intell 1982, 18:203-226.
    • (1982) Artif Intell , vol.18 , pp. 203-226
    • Mitchell, T.M.1
  • 23
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S, Koller D. Support vector machine active learning with applications to text classification. J Mach Learn Res 2002, 2:45-66.
    • (2002) J Mach Learn Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 25
    • 84907306360 scopus 로고    scopus 로고
    • Active learning and experimental design with SVMs
    • Ho C-H, Tsai M-H, Lin C-J. Active learning and experimental design with SVMs. J Mach Learn Res 2011, 16:71-84.
    • (2011) J Mach Learn Res , vol.16 , pp. 71-84
    • Ho, C.-H.1    Tsai, M.-H.2    Lin, C.-J.3
  • 26
    • 79952631522 scopus 로고    scopus 로고
    • Two faces of active learning
    • Dasgupta S. Two faces of active learning. Theor Comput Sci 2011, 412:1767-1781.
    • (2011) Theor Comput Sci , vol.412 , pp. 1767-1781
    • Dasgupta, S.1
  • 31
    • 84876856669 scopus 로고    scopus 로고
    • Active learning with hinted support vector machine
    • Li C-L, Ferng C-S, Lin H-T. Active learning with hinted support vector machine. J Mach Learn Res 2012, 25:221-235.
    • (2012) J Mach Learn Res , vol.25 , pp. 221-235
    • Li, C.-L.1    Ferng, C.-S.2    Lin, H.-T.3
  • 32
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle O, Schölkopf B, Zien A, eds. Cambridge, MA: MIT Press
    • Chapelle O, Schölkopf B, Zien A, eds. Semi-Supervised Learning. Cambridge, MA: MIT Press; 2006.
    • (2006) Semi-Supervised Learning
  • 33
    • 1342282156 scopus 로고    scopus 로고
    • A probabilistic active support vector learning algorithm
    • Mitra P, Murthy C, Pal S. A probabilistic active support vector learning algorithm. Trans Pattern Anal Mach Intell 2004, 26:413-418.
    • (2004) Trans Pattern Anal Mach Intell , vol.26 , pp. 413-418
    • Mitra, P.1    Murthy, C.2    Pal, S.3
  • 34
    • 56749103116 scopus 로고    scopus 로고
    • Sample selection bias correction theory
    • Bshouty N, Stoltz G, Vayatis N, Zeugmann T, eds. Berlin/Heidelberg, Germany: Springer
    • Cortes C, Mohri M, Riley M, Rostamizadeh A. Sample selection bias correction theory. In: Bshouty N, Stoltz G, Vayatis N, Zeugmann T, eds. Algorithmic Learning Theory. Berlin/Heidelberg, Germany: Springer; 2008, 38-53.
    • (2008) Algorithmic Learning Theory , pp. 38-53
    • Cortes, C.1    Mohri, M.2    Riley, M.3    Rostamizadeh, A.4
  • 40
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Smola A, Bartlett P, Schölkopf B, Schuurmans D, eds. Cambridge, MA: MIT Press
    • Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D, eds. Advances in Large Margin Classifiers. Cambridge, MA: MIT Press; 1999, 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 41
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie T, Tibshirani R. Classification by pairwise coupling. Ann Stat 1998, 26:451-471.
    • (1998) Ann Stat , vol.26 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 43
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R, Klautau A. In defense of one-vs-all classification. J Mach Learn Res 2004, 5:101-141.
    • (2004) J Mach Learn Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 46
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Bordes A, Ertekin S, Weston J, Bottou L. Fast kernel classifiers with online and active learning. J Mach Learn Res 2005, 6:1579-1619.
    • (2005) J Mach Learn Res , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 47
    • 38649118902 scopus 로고    scopus 로고
    • Second-order SMO improves SVM online and active learning
    • Glasmachers T, Igel C. Second-order SMO improves SVM online and active learning. Neural Comput 2008, 20:374-382.
    • (2008) Neural Comput , vol.20 , pp. 374-382
    • Glasmachers, T.1    Igel, C.2
  • 48
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf B, Burges C, Smola A, eds. chapter 12. Cambridge, MA: MIT Press
    • Platt J. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges C, Smola A, eds. Advances in Kernel Methods-Support Vector Learning chapter 12. Cambridge, MA: MIT Press; 1999, 185-208.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 50
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • Washington, DC: AAAI Press
    • Brinker K. Incorporating diversity in active learning with support vector machines. In: Proceedings of the International Conference on Machine Learning (ICML). Washington, DC: AAAI Press; 2003, 59-66.
    • (2003) Proceedings of the International Conference on Machine Learning (ICML) , pp. 59-66
    • Brinker, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.