-
1
-
-
84875684423
-
A novel active learning method for support vector regression to estimate biophysical parameters from remotely sensed images
-
Bruzzone L, ed., International Society for Optics and Photonics, 85370L, Edinburgh, UK
-
Demir B, Bruzzone L. A novel active learning method for support vector regression to estimate biophysical parameters from remotely sensed images. In: Bruzzone L, ed. Proceedings of SPIE 8537, Image and Signal Processing for Remote Sensing XVIII, volume 8537, International Society for Optics and Photonics, 85370L, Edinburgh, UK; 2012.
-
(2012)
Proceedings of SPIE 8537, Image and Signal Processing for Remote Sensing XVIII
, vol.8537
-
-
Demir, B.1
Bruzzone, L.2
-
4
-
-
84873596567
-
-
San Rafael, CA: Morgan & Claypool
-
Settles B. Active Learning. San Rafael, CA: Morgan & Claypool; 2012.
-
(2012)
Active Learning
-
-
Settles, B.1
-
7
-
-
84555196171
-
Active learning to overcome sample selection bias: application to photometric variable star classification
-
Richards JW, Starr DL, Brink H, Miller AA, Bloom JS, Butler NR, James JB, Long JP, Rice J. Active learning to overcome sample selection bias: application to photometric variable star classification. Astrophys J 2012, 744:192.
-
(2012)
Astrophys J
, vol.744
, pp. 192
-
-
Richards, J.W.1
Starr, D.L.2
Brink, H.3
Miller, A.A.4
Bloom, J.S.5
Butler, N.R.6
James, J.B.7
Long, J.P.8
Rice, J.9
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995, 20:273-297.
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
84899529040
-
Support vector machines in engineering: an overview
-
Salcedo-Sanz S, Rojo-Álvarez JL, Martnez-Ramón M, Camps-Valls G. Support vector machines in engineering: an overview. WIREs Data Min Knowl Discov 2014, 4:234-267.
-
(2014)
WIREs Data Min Knowl Discov
, vol.4
, pp. 234-267
-
-
Salcedo-Sanz, S.1
Rojo-Álvarez, J.L.2
Martnez-Ramón, M.3
Camps-Valls, G.4
-
13
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
Schölkopf B, Smola A. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press; 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
16
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn N. Theory of reproducing kernels. Trans Am Math Soc 1950, 68:337-404.
-
(1950)
Trans Am Math Soc
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
19
-
-
0000531852
-
Generalization as search
-
Mitchell TM. Generalization as search. Artif Intell 1982, 18:203-226.
-
(1982)
Artif Intell
, vol.18
, pp. 203-226
-
-
Mitchell, T.M.1
-
23
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong S, Koller D. Support vector machine active learning with applications to text classification. J Mach Learn Res 2002, 2:45-66.
-
(2002)
J Mach Learn Res
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
24
-
-
84870050644
-
Results of the active learning challenge
-
Guyon I, Cawley G, Dror G, Lemaire V. Results of the active learning challenge. J Mach Learn Res 2011, 16:19-45.
-
(2011)
J Mach Learn Res
, vol.16
, pp. 19-45
-
-
Guyon, I.1
Cawley, G.2
Dror, G.3
Lemaire, V.4
-
25
-
-
84907306360
-
Active learning and experimental design with SVMs
-
Ho C-H, Tsai M-H, Lin C-J. Active learning and experimental design with SVMs. J Mach Learn Res 2011, 16:71-84.
-
(2011)
J Mach Learn Res
, vol.16
, pp. 71-84
-
-
Ho, C.-H.1
Tsai, M.-H.2
Lin, C.-J.3
-
26
-
-
79952631522
-
Two faces of active learning
-
Dasgupta S. Two faces of active learning. Theor Comput Sci 2011, 412:1767-1781.
-
(2011)
Theor Comput Sci
, vol.412
, pp. 1767-1781
-
-
Dasgupta, S.1
-
27
-
-
35248825961
-
Representative sampling for text classification using support vector machines
-
Pisa, Italy: Springer
-
Xu Z, Yu K, Tresp V, Xu X, Wang J. Representative sampling for text classification using support vector machines. In: Proceedings of the European Conference on Information Retrieval (ECIR). Pisa, Italy: Springer; 2003, 393-407.
-
(2003)
Proceedings of the European Conference on Information Retrieval (ECIR)
, pp. 393-407
-
-
Xu, Z.1
Yu, K.2
Tresp, V.3
Xu, X.4
Wang, J.5
-
30
-
-
51949109425
-
Semi-supervised SVM batch mode active learning for image retrieval
-
Anchorage, AK: IEEE
-
Hoi S, Jin R, Zhu J, Lyu M. Semi-supervised SVM batch mode active learning for image retrieval. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK: IEEE; 2008, 1-7.
-
(2008)
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1-7
-
-
Hoi, S.1
Jin, R.2
Zhu, J.3
Lyu, M.4
-
31
-
-
84876856669
-
Active learning with hinted support vector machine
-
Li C-L, Ferng C-S, Lin H-T. Active learning with hinted support vector machine. J Mach Learn Res 2012, 25:221-235.
-
(2012)
J Mach Learn Res
, vol.25
, pp. 221-235
-
-
Li, C.-L.1
Ferng, C.-S.2
Lin, H.-T.3
-
32
-
-
33749252873
-
-
Chapelle O, Schölkopf B, Zien A, eds. Cambridge, MA: MIT Press
-
Chapelle O, Schölkopf B, Zien A, eds. Semi-Supervised Learning. Cambridge, MA: MIT Press; 2006.
-
(2006)
Semi-Supervised Learning
-
-
-
34
-
-
56749103116
-
Sample selection bias correction theory
-
Bshouty N, Stoltz G, Vayatis N, Zeugmann T, eds. Berlin/Heidelberg, Germany: Springer
-
Cortes C, Mohri M, Riley M, Rostamizadeh A. Sample selection bias correction theory. In: Bshouty N, Stoltz G, Vayatis N, Zeugmann T, eds. Algorithmic Learning Theory. Berlin/Heidelberg, Germany: Springer; 2008, 38-53.
-
(2008)
Algorithmic Learning Theory
, pp. 38-53
-
-
Cortes, C.1
Mohri, M.2
Riley, M.3
Rostamizadeh, A.4
-
37
-
-
85161966389
-
Agnostic active learning without constraints
-
Vancouver, Canada: MIT Press
-
Beygelzimer A, Langford J, Tong Z, Hsu D. Agnostic active learning without constraints. In: Advances in Neural Information Processing Systems (NIPS). Vancouver, Canada: MIT Press; 2010, 199-207.
-
(2010)
Advances in Neural Information Processing Systems (NIPS)
, pp. 199-207
-
-
Beygelzimer, A.1
Langford, J.2
Tong, Z.3
Hsu, D.4
-
40
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
Smola A, Bartlett P, Schölkopf B, Schuurmans D, eds. Cambridge, MA: MIT Press
-
Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D, eds. Advances in Large Margin Classifiers. Cambridge, MA: MIT Press; 1999, 61-74.
-
(1999)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.1
-
41
-
-
0032355984
-
Classification by pairwise coupling
-
Hastie T, Tibshirani R. Classification by pairwise coupling. Ann Stat 1998, 26:451-471.
-
(1998)
Ann Stat
, vol.26
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
43
-
-
56749117943
-
In defense of one-vs-all classification
-
Rifkin R, Klautau A. In defense of one-vs-all classification. J Mach Learn Res 2004, 5:101-141.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 101-141
-
-
Rifkin, R.1
Klautau, A.2
-
45
-
-
10044219654
-
Active learning to recognize multiple types of plankton
-
Cambridge, UK: IEEE
-
Luo T, Kramer K, Goldgof D, Hall L, Samson S, Remsen A, Hopkins T. Active learning to recognize multiple types of plankton. In: Proceedings of the International Conference on Pattern Recognition (ICPR), volume 3. Cambridge, UK: IEEE; 2004, 478-481.
-
(2004)
Proceedings of the International Conference on Pattern Recognition (ICPR)
, vol.3
, pp. 478-481
-
-
Luo, T.1
Kramer, K.2
Goldgof, D.3
Hall, L.4
Samson, S.5
Remsen, A.6
Hopkins, T.7
-
46
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
Bordes A, Ertekin S, Weston J, Bottou L. Fast kernel classifiers with online and active learning. J Mach Learn Res 2005, 6:1579-1619.
-
(2005)
J Mach Learn Res
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
47
-
-
38649118902
-
Second-order SMO improves SVM online and active learning
-
Glasmachers T, Igel C. Second-order SMO improves SVM online and active learning. Neural Comput 2008, 20:374-382.
-
(2008)
Neural Comput
, vol.20
, pp. 374-382
-
-
Glasmachers, T.1
Igel, C.2
-
48
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Schölkopf B, Burges C, Smola A, eds. chapter 12. Cambridge, MA: MIT Press
-
Platt J. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges C, Smola A, eds. Advances in Kernel Methods-Support Vector Learning chapter 12. Cambridge, MA: MIT Press; 1999, 185-208.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
50
-
-
1942517333
-
Incorporating diversity in active learning with support vector machines
-
Washington, DC: AAAI Press
-
Brinker K. Incorporating diversity in active learning with support vector machines. In: Proceedings of the International Conference on Machine Learning (ICML). Washington, DC: AAAI Press; 2003, 59-66.
-
(2003)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 59-66
-
-
Brinker, K.1
|