-
1
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA
-
Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In Proceedings of fifth COLT. Pittsburgh, PA, 1992, 144-152.
-
(1992)
Proceedings of fifth COLT
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
2
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
Chemnitz, Germany
-
Joachims T, Text categorization with support vector machines: learning with many relevant features. In Proceedings of ECML. Chemnitz, Germany, 1998, 137-142.
-
(1998)
Proceedings of ECML
, pp. 137-142
-
-
Joachims, T.1
-
3
-
-
0036161034
-
Training invariant support vector machines
-
Decoste D, Scholkopf B. Training invariant support vector machines. Mach Learn 2002, 46(1-3):161-190.
-
(2002)
Mach Learn
, vol.46
, Issue.1-3
, pp. 161-190
-
-
Decoste, D.1
Scholkopf, B.2
-
4
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 2000, 97(1):262-267.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
-
5
-
-
8844263749
-
A statistical framework for genomic data fusion
-
Lanckriet GR, De Bie T, Cristianini N, Jordan MI, Noble WS. A statistical framework for genomic data fusion. Bioinformatics 2004, 20(16):2626-2635.
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.R.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
6
-
-
17444372787
-
Improved prediction of protein-protein binding sites using a support vector machines approach
-
Bradford JR, Westhead DR. Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 2005, 8(21):1487-1494.
-
(2005)
Bioinformatics
, vol.8
, Issue.21
, pp. 1487-1494
-
-
Bradford, J.R.1
Westhead, D.R.2
-
7
-
-
0346252360
-
Classification of protein quaternary structure with support vector machine
-
Zhang S, Pan Q, Zhang H, Zhang Y, Wang H. Classification of protein quaternary structure with support vector machine. Bioinformatics 2003, 19(18):2390-2396.
-
(2003)
Bioinformatics
, vol.19
, Issue.18
, pp. 2390-2396
-
-
Zhang, S.1
Pan, Q.2
Zhang, H.3
Zhang, Y.4
Wang, H.5
-
8
-
-
29244465822
-
An SVM-based system for predicting protein subnuclear localizations
-
Lei Z, Dai Y. An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics 2005, 6(1):291-298.
-
(2005)
BMC Bioinformatics
, vol.6
, Issue.1
, pp. 291-298
-
-
Lei, Z.1
Dai, Y.2
-
11
-
-
34249753618
-
Support vector networks
-
Cortes C, Vapnik V. Support vector networks. Mach Learn 1995, 20(3):273-297.
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
9444285762
-
Fast kernels for inexact string matching
-
Washington, DC
-
Leslie CS, Kuang R. Fast kernels for inexact string matching. In Proceedings of COLT, Washington, DC, 2003, 114-128.
-
(2003)
Proceedings of COLT
, pp. 114-128
-
-
Leslie, C.S.1
Kuang, R.2
-
15
-
-
0041775676
-
Diffusion kernels on graphs and other discrete structures
-
Sydney, Australia
-
Kondor RI, Lafferty J. Diffusion kernels on graphs and other discrete structures. In Proceedings of 19th ICML, Sydney, Australia, 2002, 315-322.
-
(2002)
Proceedings of 19th ICML
, pp. 315-322
-
-
Kondor, R.I.1
Lafferty, J.2
-
16
-
-
0033289037
-
Using the fisher kernel method to detect remote protein homologies
-
Heidelberg, Germany
-
Jaakkola T, Diekhans M, Haussler D. Using the fisher kernel method to detect remote protein homologies. In Proceedings of seventh ISMB, Heidelberg, Germany, 1999, 149-158.
-
(1999)
Proceedings of seventh ISMB
, pp. 149-158
-
-
Jaakkola, T.1
Diekhans, M.2
Haussler, D.3
-
17
-
-
78651534877
-
-
Kashima H, Tsuda K, Inokuchi A. Kernels for Graphs. In: Scholkopf B, Tsuda K, Vert JP, eds. Kernel methods in computational biology. Handbook of Computational Geometry for Pattern Recognition. Cambridge, MA: MIT, 2004.
-
Kashima H, Tsuda K, Inokuchi A. Kernels for Graphs. In: Scholkopf B, Tsuda K, Vert JP, eds. Kernel methods in computational biology. Handbook of Computational Geometry for Pattern Recognition. Cambridge, MA: MIT, 2004.
-
-
-
-
18
-
-
0036780246
-
A new discriminative kernel from probabilistic models
-
Tsuda K, Kawanabe M, Ratsch G, Sonnenburg S, Mller KR. A new discriminative kernel from probabilistic models. Neural Comput 2002, 14(10):2397-2414.
-
(2002)
Neural Comput
, vol.14
, Issue.10
, pp. 2397-2414
-
-
Tsuda, K.1
Kawanabe, M.2
Ratsch, G.3
Sonnenburg, S.4
Mller, K.R.5
-
19
-
-
84983643084
-
Inferring a semantic representation of text via cross-language correlation analysis
-
Vancouver, Canada
-
Vinokourov A, Shawe-Taylor J, Cristianini N. Inferring a semantic representation of text via cross-language correlation analysis. In NIPS, Vancouver, Canada, 2002, 1473-1480.
-
(2002)
NIPS
, pp. 1473-1480
-
-
Vinokourov, A.1
Shawe-Taylor, J.2
Cristianini, N.3
-
20
-
-
84899021874
-
Graph-driven features extraction from microarray data using diffusion kernels and kernel CCA
-
Vancouver, Canada
-
Vert JP, Kanehisa M. Graph-driven features extraction from microarray data using diffusion kernels and kernel CCA. In NIPS, Vancouver, Canada, 2003,1425-1432.
-
(2003)
NIPS
, pp. 1425-1432
-
-
Vert, J.P.1
Kanehisa, M.2
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Taipei, Taiwan
-
Lecun Y, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. In Proceedings ofthe IEEE, Taipei, Taiwan, 1998, 2278-2324.
-
(1998)
Proceedings ofthe IEEE
, pp. 2278-2324
-
-
Lecun, Y.1
Bengio, Y.2
Haffner, P.3
-
22
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
Scholkopf CB, Burges CJ, Smola AJ, eds, Cambridge, MA: MIT Press;
-
Joachims T. Making large-scale support vector machine learning practical. In: Scholkopf CB, Burges CJ, Smola AJ, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press; 1999,169-184.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
24
-
-
8844278523
-
Learning the kernel matrix with semidef-inite programming
-
Lanckriet GR, Cristianini N, Bartlett P, El Ghaoui L, Jordan MI. Learning the kernel matrix with semidef-inite programming. J Mach Learn Res2004, 5(16): 27-72.
-
(2004)
J Mach Learn Res
, vol.5
, Issue.16
, pp. 27-72
-
-
Lanckriet, G.R.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
26
-
-
78651533052
-
-
De Bie T, Cristianini N, Rosipal R. Eigenproblems in pattern recognition. In: Bayro-Corrochano E., ed. Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics. New York: Springer-Verlag; 2004.
-
De Bie T, Cristianini N, Rosipal R. Eigenproblems in pattern recognition. In: Bayro-Corrochano E., ed. Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics. New York: Springer-Verlag; 2004.
-
-
-
-
28
-
-
78651538626
-
-
27
-
27
-
-
-
|