-
1
-
-
0032488846
-
The proteasome: Paradigm of a self-compartmentalizing protease
-
Baumeister W, Walz J, Zühl R, Seemüller E. The proteasome: Paradigm of a self-compartmentalizing protease. Cell 1998;92:367.
-
(1998)
Cell
, vol.92
, pp. 367
-
-
Baumeister, W.1
Walz, J.2
Zühl, R.3
Seemüller, E.4
-
2
-
-
33644867538
-
The proteasome: A utility tool for transcription?
-
Collins GA, Tansey WP. The proteasome: A utility tool for transcription? Curr Opin Genet Dev 2006;16:197-202.
-
(2006)
Curr Opin Genet Dev
, vol.16
, pp. 197-202
-
-
Collins, G.A.1
Tansey, W.P.2
-
3
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 A resolution
-
Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997;386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Lowe, J.3
Stock, D.4
Bochtler, M.5
Bartunik, H.D.6
Huber, R.7
-
4
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D. A gated channel into the proteasome core particle. Nat Struct Biol 2000;7:1062-1067.
-
(2000)
Nat Struct Biol
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
Moroder, L.4
Rubin, D.M.5
Huber, R.6
Glickman, M.H.7
Finley, D.8
-
6
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution
-
Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995;268:533-539.
-
(1995)
Science
, vol.268
, pp. 533-539
-
-
Lowe, J.1
Stock, D.2
Jap, B.3
Zwickl, P.4
Baumeister, W.5
Huber, R.6
-
7
-
-
0032867676
-
The 26S proteasome: A molecular machine designed for controlled proteolysis
-
Voges D, Zwickl P, Baumeister W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem 1999;68:1015-1068.
-
(1999)
Annu Rev Biochem
, vol.68
, pp. 1015-1068
-
-
Voges, D.1
Zwickl, P.2
Baumeister, W.3
-
8
-
-
53149123284
-
Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core
-
da Fonseca PC, Morris EP. Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core. J Biol Chem 2008;283:23305-23314.
-
(2008)
J Biol Chem
, vol.283
, pp. 23305-23314
-
-
da Fonseca, P.C.1
Morris, E.P.2
-
9
-
-
28444452611
-
ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, #gate |opening, and translocation of unfolded proteins
-
Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, #gate |opening, and translocation of unfolded proteins. Mol Cell 2005;20:687-698.
-
(2005)
Mol Cell
, vol.20
, pp. 687-698
-
-
Smith, D.M.1
Kafri, G.2
Cheng, Y.3
Ng, D.4
Walz, T.5
Goldberg, A.L.6
-
10
-
-
0033769733
-
PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone
-
Benaroudj N, Goldberg AL. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol 2000;2:833-839.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 833-839
-
-
Benaroudj, N.1
Goldberg, A.L.2
-
11
-
-
0037248908
-
ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
-
Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 2003;11:69-78.
-
(2003)
Mol Cell
, vol.11
, pp. 69-78
-
-
Benaroudj, N.1
Zwickl, P.2
Seemuller, E.3
Baumeister, W.4
Goldberg, A.L.5
-
12
-
-
0035694696
-
Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome
-
Navon A, Goldberg AL. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 2001;8:1339-1349.
-
(2001)
Mol Cell
, vol.8
, pp. 1339-1349
-
-
Navon, A.1
Goldberg, A.L.2
-
13
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000;408:115-120.
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
Masters, E.I.2
Kramer, L.3
Knowlton, J.R.4
Yao, Y.5
Wang, C.C.6
Hill, C.P.7
-
14
-
-
11844287006
-
Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors
-
Rechsteiner M, Hill CP. Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 2005;15:27-33.
-
(2005)
Trends Cell Biol
, vol.15
, pp. 27-33
-
-
Rechsteiner, M.1
Hill, C.P.2
-
15
-
-
0026498493
-
Purification of an 11 S regulator of the multicatalytic protease
-
Dubiel W, Pratt G, Ferrell K, Rechsteiner M. Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem 1992;267:22369-22377.
-
(1992)
J Biol Chem
, vol.267
, pp. 22369-22377
-
-
Dubiel, W.1
Pratt, G.2
Ferrell, K.3
Rechsteiner, M.4
-
16
-
-
0026669739
-
Identification, purification, and characterization of a protein activator (PA28 of the 20 S proteasome macropain)
-
Ma CP, Slaughter CA, DeMartino GN. Identification, purification, and characterization of a protein activator (PA28 of the 20 S proteasome macropain). J Biol Chem 1992;267:10515-10523.
-
(1992)
J Biol Chem
, vol.267
, pp. 10515-10523
-
-
Ma, C.P.1
Slaughter, C.A.2
DeMartino, G.N.3
-
17
-
-
0033607805
-
Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosomal brucei
-
Yao Y, Huang L, Krutchinsky A, Wong ML, Standing KG, Burlingame AL, Wang CC. Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosomal brucei. J Biol Chem 1999;274:33921-33930.
-
(1999)
J Biol Chem
, vol.274
, pp. 33921-33930
-
-
Yao, Y.1
Huang, L.2
Krutchinsky, A.3
Wong, M.L.4
Standing, K.G.5
Burlingame, A.L.6
Wang, C.C.7
-
18
-
-
0031456970
-
Structure of the proteasome activator REGalpha (PA28alpha)
-
Knowlton JR, Johnston SC, Whitby FG, Realini C, Zhang Z, Rechsteiner M, Hill CP. Structure of the proteasome activator REGalpha (PA28alpha). Nature 1997;390:639-643.
-
(1997)
Nature
, vol.390
, pp. 639-643
-
-
Knowlton, J.R.1
Johnston, S.C.2
Whitby, F.G.3
Realini, C.4
Zhang, Z.5
Rechsteiner, M.6
Hill, C.P.7
-
19
-
-
0037013955
-
Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes
-
Cascio P, Call M, Petre BM, Walz T, Goldberg AL. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J 2002;21:2636-2645.
-
(2002)
EMBO J
, vol.21
, pp. 2636-2645
-
-
Cascio, P.1
Call, M.2
Petre, B.M.3
Walz, T.4
Goldberg, A.L.5
-
20
-
-
0034640520
-
Hybrid proteasomes induction by interferon-γ and contribution to ATP-dependent proteolysis
-
Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K. Hybrid proteasomes induction by interferon-γ and contribution to ATP-dependent proteolysis. J Biol Chem 2000;275:14336-14345.
-
(2000)
J Biol Chem
, vol.275
, pp. 14336-14345
-
-
Tanahashi, N.1
Murakami, Y.2
Minami, Y.3
Shimbara, N.4
Hendil, K.B.5
Tanaka, K.6
-
21
-
-
0033780126
-
Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28
-
Stohwasser R, Salzmann U, Giesebrecht J, Kloetzel PM, Holzhütter HG. Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur J Biochem 2000;267:6221-6230.
-
(2000)
Eur J Biochem
, vol.267
, pp. 6221-6230
-
-
Stohwasser, R.1
Salzmann, U.2
Giesebrecht, J.3
Kloetzel, P.M.4
Holzhütter, H.G.5
-
22
-
-
19444387760
-
The 1. 9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Förster A, Masters EI, Whitby FG, Robinson H, Hill CP. The 1. 9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 2005;18:589-599.
-
(2005)
Mol Cell
, vol.18
, pp. 589-599
-
-
Förster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
23
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 2007;27:731-744.
-
(2007)
Mol Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
24
-
-
57649140340
-
Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome
-
Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem 2008;283:31813-31822.
-
(2008)
J Biol Chem
, vol.283
, pp. 31813-31822
-
-
Gillette, T.G.1
Kumar, B.2
Thompson, D.3
Slaughter, C.A.4
DeMartino, G.N.5
-
25
-
-
76349089770
-
Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
-
Yu Y, Smith DM, Kim HM, Rodriguez V, Goldberg AL, Cheng Y. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J 2010;29:692.
-
(2010)
EMBO J
, vol.29
, pp. 692
-
-
Yu, Y.1
Smith, D.M.2
Kim, H.M.3
Rodriguez, V.4
Goldberg, A.L.5
Cheng, Y.6
-
26
-
-
77950497745
-
Dynamic regulation of archaeal proteasome gate opening as studied by trosy NMR
-
Religa TL, Sprangers R, Kay LE. Dynamic regulation of archaeal proteasome gate opening as studied by trosy NMR. Science 2010;328:98-102.
-
(2010)
Science
, vol.328
, pp. 98-102
-
-
Religa, T.L.1
Sprangers, R.2
Kay, L.E.3
-
27
-
-
0043192299
-
The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation
-
Förster A, Whitby FG, Hill CP. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J 2003;22:4356-4364.
-
(2003)
EMBO J
, vol.22
, pp. 4356-4364
-
-
Förster, A.1
Whitby, F.G.2
Hill, C.P.3
-
28
-
-
77951217659
-
Detection of multiscale pockets on protein surfaces using mathematical morphology
-
Kawabata T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins 2009;78:1195-1211.
-
(2009)
Proteins
, vol.78
, pp. 1195-1211
-
-
Kawabata, T.1
-
29
-
-
84904381027
-
Molecular dynamics simulation system for structural analysis of biomolecules by high performance computing
-
Ishida H. Molecular dynamics simulation system for structural analysis of biomolecules by high performance computing. Prog Nucl Sci Technol 2011;2:470-476.
-
(2011)
Prog Nucl Sci Technol
, vol.2
, pp. 470-476
-
-
Ishida, H.1
-
30
-
-
58749114577
-
Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome
-
Ishida H, Hayward S. Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome. Biophys J 2008;95:5962-5973.
-
(2008)
Biophys J
, vol.95
, pp. 5962-5973
-
-
Ishida, H.1
Hayward, S.2
-
31
-
-
77956242316
-
Branch migration of holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm
-
Ishida H. Branch migration of holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm. J Comput Chem 2010;31:2317-2329.
-
(2010)
J Comput Chem
, vol.31
, pp. 2317-2329
-
-
Ishida, H.1
-
32
-
-
33748518255
-
Comparison of multiple amber force fields and development of improved protein backbone parameters
-
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 2006;65:712-725.
-
(2006)
Proteins
, vol.65
, pp. 712-725
-
-
Hornak, V.1
Abel, R.2
Okur, A.3
Strockbine, B.4
Roitberg, A.5
Simmerling, C.6
-
33
-
-
41849093720
-
Adaptively biased molecular dynamics of free energy calculations
-
Babin V, Roland C, Sagui C. Adaptively biased molecular dynamics of free energy calculations. J Chem Phys 2008;128:134101.
-
(2008)
J Chem Phys
, vol.128
, pp. 134101
-
-
Babin, V.1
Roland, C.2
Sagui, C.3
-
34
-
-
0001616080
-
Replica-exchange molecular dynamics method for protein folding
-
Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 1999;314:141-151.
-
(1999)
Chem Phys Lett
, vol.314
, pp. 141-151
-
-
Sugita, Y.1
Okamoto, Y.2
-
35
-
-
0001351515
-
Estimation of absolute and relative entropies of macromolecules using the covariance matrix
-
Schlitter J. Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 1993;215:617-621.
-
(1993)
Chem Phys Lett
, vol.215
, pp. 617-621
-
-
Schlitter, J.1
-
36
-
-
25844492293
-
Evaluating the accuracy of the quasiharmonic approximation
-
Chang C-E, Chen W, Gilson MK. Evaluating the accuracy of the quasiharmonic approximation. J Chem Theory Comput 2005;1:1017-1028.
-
(2005)
J Chem Theory Comput
, vol.1
, pp. 1017-1028
-
-
Chang, C.-E.1
Chen, W.2
Gilson, M.K.3
-
37
-
-
0033525086
-
The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation
-
Kisselev AF, Akopian TN, Woo KM, Goldberg AL. The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 1999;274:3363-3371.
-
(1999)
J Biol Chem
, vol.274
, pp. 3363-3371
-
-
Kisselev, A.F.1
Akopian, T.N.2
Woo, K.M.3
Goldberg, A.L.4
-
38
-
-
0035266072
-
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
-
Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 2001;7:627-637.
-
(2001)
Mol Cell
, vol.7
, pp. 627-637
-
-
Lee, C.1
Schwartz, M.P.2
Prakash, S.3
Iwakura, M.4
Matouschek, A.5
-
39
-
-
0042329502
-
Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine
-
Kenniston JA, Baker TA, Fernandez JM, Sauer RT. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 2003;114:511-520.
-
(2003)
Cell
, vol.114
, pp. 511-520
-
-
Kenniston, J.A.1
Baker, T.A.2
Fernandez, J.M.3
Sauer, R.T.4
-
40
-
-
0034677361
-
The structures of HsIU and the ATP-dependent protease HsIU-HsIV
-
Bochtler M, Hartmann C, Song HK, Bourenkov GP, Bartunik HD, Huber R. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 2000;403:800-805.
-
(2000)
Nature
, vol.403
, pp. 800-805
-
-
Bochtler, M.1
Hartmann, C.2
Song, H.K.3
Bourenkov, G.P.4
Bartunik, H.D.5
Huber, R.6
-
41
-
-
0035184442
-
Nucleotide-dependent conformational changes in a protease-associated ATPase HslU
-
Wang J, Song JJ, Seong IS, Franklin MC, Kamtekar S, Eom SH, Chung CH. Nucleotide-dependent conformational changes in a protease-associated ATPase HslU. Structure (London) 2001;9:1107-1116.
-
(2001)
Structure (London)
, vol.9
, pp. 1107-1116
-
-
Wang, J.1
Song, J.J.2
Seong, I.S.3
Franklin, M.C.4
Kamtekar, S.5
Eom, S.H.6
Chung, C.H.7
-
42
-
-
0242540367
-
Protein folding: importance of the Anfinsen cage
-
Ellis RJ. Protein folding: importance of the Anfinsen cage. Curr Biol 2003;13:R881-R883.
-
(2003)
Curr Biol
, vol.13
-
-
Ellis, R.J.1
-
43
-
-
0033515436
-
Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity
-
Betancourt MR, Thirumalai D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J Mol Biol 1999;287:627-644.
-
(1999)
J Mol Biol
, vol.287
, pp. 627-644
-
-
Betancourt, M.R.1
Thirumalai, D.2
-
44
-
-
33344476423
-
Nanopore-protein interactions dramatically alter stability and yeild of the native state in restricted spaces
-
Cheung MS, Thirumalai D. Nanopore-protein interactions dramatically alter stability and yeild of the native state in restricted spaces. J Mol Biol 2006;357:632-643.
-
(2006)
J Mol Biol
, vol.357
, pp. 632-643
-
-
Cheung, M.S.1
Thirumalai, D.2
-
46
-
-
77957970501
-
The proteasome antechamber maintains substrates in an unfolded state
-
Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE. The proteasome antechamber maintains substrates in an unfolded state. Nature 2010;467:868-873.
-
(2010)
Nature
, vol.467
, pp. 868-873
-
-
Ruschak, A.M.1
Religa, T.L.2
Breuer, S.3
Witt, S.4
Kay, L.E.5
-
47
-
-
33646897305
-
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
-
Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 2006;125:903-914.
-
(2006)
Cell
, vol.125
, pp. 903-914
-
-
Tang, Y.C.1
Chang, H.C.2
Roeben, A.3
Wischnewski, D.4
Wischnewski, N.5
Kerner, M.J.6
Hartl, F.U.7
Hayer-Hartl, M.8
-
48
-
-
34248349952
-
Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL
-
Farr GW, Fenton WA, Horwich AL. Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci USA 2007;104:5342-5347.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 5342-5347
-
-
Farr, G.W.1
Fenton, W.A.2
Horwich, A.L.3
|