메뉴 건너뛰기




Volumn 82, Issue 9, 2014, Pages 2229-2239

Kinetics of protein fibrillation controlled by fibril elongation

Author keywords

Amyloid protein; Fraction of protein fibrillated; Prion protein; Protein aggregation; Protein aggregation diseases; Protein fibrils

Indexed keywords

AMYLOID; AMYLOID BETA PROTEIN[1-40]; MONOMER; PRION PROTEIN; PRION PROTEIN SUP35; PROTEIN; UNCLASSIFIED DRUG; AMYLOID BETA PROTEIN; PEPTIDE FRAGMENT; PROTEIN AGGREGATE; SACCHAROMYCES CEREVISIAE PROTEIN; SUP35 PROTEIN, S CEREVISIAE; TRANSLATION TERMINATION FACTOR;

EID: 84906277193     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.24586     Document Type: Article
Times cited : (6)

References (35)
  • 1
    • 59349083966 scopus 로고    scopus 로고
    • Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature
    • Morris AM, Watzky MA, Finke RG. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 2009;1794:375-397.
    • (2009) Biochim Biophys Acta , vol.1794 , pp. 375-397
    • Morris, A.M.1    Watzky, M.A.2    Finke, R.G.3
  • 2
    • 84883140558 scopus 로고    scopus 로고
    • Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth
    • Gillam JE, MacPhee CE. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. J Phys: Condens Matter 2013;25:272101.
    • (2013) J Phys: Condens Matter , vol.25 , pp. 272101
    • Gillam, J.E.1    MacPhee, C.E.2
  • 3
    • 33947613349 scopus 로고
    • A theory of linear and helical aggregations of macromolecules
    • Oosawa F, Kasai M. A theory of linear and helical aggregations of macromolecules. J Mol Biol 1962;4:10-21.
    • (1962) J Mol Biol , vol.4 , pp. 10-21
    • Oosawa, F.1    Kasai, M.2
  • 4
    • 0021527508 scopus 로고
    • Kinetics of nucleation-controlled polymerization
    • Bishop MF, Ferrone FA. Kinetics of nucleation-controlled polymerization. Biophys J 1984;46:631-644.
    • (1984) Biophys J , vol.46 , pp. 631-644
    • Bishop, M.F.1    Ferrone, F.A.2
  • 5
    • 0021837479 scopus 로고
    • Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism
    • Ferrone FA, Hofrichter J, Eaton WA. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 1985;183:611-631.
    • (1985) J Mol Biol , vol.183 , pp. 611-631
    • Ferrone, F.A.1    Hofrichter, J.2    Eaton, W.A.3
  • 7
    • 0032968132 scopus 로고    scopus 로고
    • Quantifying the kinetic parameters of prion replication
    • Masel J, Jansen VAA, Nowak MA. Quantifying the kinetic parameters of prion replication. Biophys Chem 1999;77:139-152.
    • (1999) Biophys Chem , vol.77 , pp. 139-152
    • Masel, J.1    Jansen, V.A.A.2    Nowak, M.A.3
  • 8
    • 8844247180 scopus 로고    scopus 로고
    • Mechanism of prion propagation: amyloid growth occurs by monomer addition
    • Collins SR, Douglass A, Vale RD, Weissman JS. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2004;2:1582-1590.
    • (2004) PLoS Biol , vol.2 , pp. 1582-1590
    • Collins, S.R.1    Douglass, A.2    Vale, R.D.3    Weissman, J.S.4
  • 9
    • 0842332840 scopus 로고    scopus 로고
    • Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection
    • Hall D, Edskes H. Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J Mol Biol 2004;336:775-786.
    • (2004) J Mol Biol , vol.336 , pp. 775-786
    • Hall, D.1    Edskes, H.2
  • 10
    • 28844469962 scopus 로고    scopus 로고
    • One-dimensional model of yeast prion aggregation
    • Kunes KC, Cox DL, Singh RRP. One-dimensional model of yeast prion aggregation. Phys Rev E 2005;72:051915.
    • (2005) Phys Rev E , vol.72 , pp. 051915
    • Kunes, K.C.1    Cox, D.L.2    Singh, R.R.P.3
  • 11
    • 34250834054 scopus 로고    scopus 로고
    • A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding
    • Andrews JM, Roberts CJ. A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. J Phys Chem B 2007;111:7897-7913.
    • (2007) J Phys Chem B , vol.111 , pp. 7897-7913
    • Andrews, J.M.1    Roberts, C.J.2
  • 12
    • 34547638452 scopus 로고    scopus 로고
    • Fiber-dependent amyloid formation as catalysis of an existing reaction pathway
    • Ruschak AM, Miranker AD. Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc Natl Acad Sci USA 2007;104:12341-12346.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 12341-12346
    • Ruschak, A.M.1    Miranker, A.D.2
  • 14
    • 48249092311 scopus 로고    scopus 로고
    • Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly
    • Xue W-F, Homans SW, Radford SE. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA 2008;105:8926-8931.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 8926-8931
    • Xue, W.-F.1    Homans, S.W.2    Radford, S.E.3
  • 15
    • 59449098817 scopus 로고    scopus 로고
    • The mechanism of amyloid-fibril formation by stefin B: temperature and protein concentration dependence of the rates
    • Skerget K, Vilfan A, Pompe-Novak M, Turk V, Waltho JP, Turk D, Zerovnik E. The mechanism of amyloid-fibril formation by stefin B: temperature and protein concentration dependence of the rates. Proteins 2009;74:425-436.
    • (2009) Proteins , vol.74 , pp. 425-436
    • Skerget, K.1    Vilfan, A.2    Pompe-Novak, M.3    Turk, V.4    Waltho, J.P.5    Turk, D.6    Zerovnik, E.7
  • 18
    • 80051899060 scopus 로고    scopus 로고
    • Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations
    • Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J Chem Phys 2011;135:065106.
    • (2011) J Chem Phys , vol.135 , pp. 065106
    • Cohen, S.I.A.1    Vendruscolo, M.2    Dobson, C.M.3    Knowles, T.P.J.4
  • 19
    • 80051897336 scopus 로고    scopus 로고
    • Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations
    • Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations. J Chem Phys 2011;135:065107.
    • (2011) J Chem Phys , vol.135 , pp. 065107
    • Cohen, S.I.A.1    Vendruscolo, M.2    Dobson, C.M.3    Knowles, T.P.J.4
  • 20
    • 80052304480 scopus 로고    scopus 로고
    • Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides
    • Vitalis A, Pappu RV. Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides. Biophys Chem 2011;159:14-23.
    • (2011) Biophys Chem , vol.159 , pp. 14-23
    • Vitalis, A.1    Pappu, R.V.2
  • 22
    • 84873336558 scopus 로고    scopus 로고
    • Simple moment-closure model for the self-assembly of breakable amyloid filaments
    • Hong L, Yong W-A. Simple moment-closure model for the self-assembly of breakable amyloid filaments. Biophys J 2013;104:533-540.
    • (2013) Biophys J , vol.104 , pp. 533-540
    • Hong, L.1    Yong, W.-A.2
  • 23
    • 84878376696 scopus 로고    scopus 로고
    • A kinetic study of amyloid formation: fibril growth and length distributions
    • Schreck JS, Yuan J-M. A kinetic study of amyloid formation: fibril growth and length distributions. J Phys Chem B 2013;117:6574-6583.
    • (2013) J Phys Chem B , vol.117 , pp. 6574-6583
    • Schreck, J.S.1    Yuan, J.-M.2
  • 24
    • 84890745009 scopus 로고    scopus 로고
    • An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior
    • Xue W-F, Radford SE. An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior. Biophys J 2013;105:2811-2819.
    • (2013) Biophys J , vol.105 , pp. 2811-2819
    • Xue, W.-F.1    Radford, S.E.2
  • 25
    • 84893833627 scopus 로고    scopus 로고
    • How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation
    • Dovidchenko NV, Finkelstein AV, Galzitskaya OV. How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation. J Phys Chem B 2014;118:1189-1197.
    • (2014) J Phys Chem B , vol.118 , pp. 1189-1197
    • Dovidchenko, N.V.1    Finkelstein, A.V.2    Galzitskaya, O.V.3
  • 26
    • 84884828846 scopus 로고    scopus 로고
    • Protein fibrillation due to elongation and fragmentation of initially appeared fibrils: a simple kinetic model
    • Kashchiev D. Protein fibrillation due to elongation and fragmentation of initially appeared fibrils: a simple kinetic model. J Chem Phys 2013;139:105103.
    • (2013) J Chem Phys , vol.139 , pp. 105103
    • Kashchiev, D.1
  • 28
    • 0020857088 scopus 로고
    • Length dependence of rate constants for end-to-end association and dissociation of equilibrium linear aggregates
    • Hill TL. Length dependence of rate constants for end-to-end association and dissociation of equilibrium linear aggregates. Biophys J 1983;44:285-288.
    • (1983) Biophys J , vol.44 , pp. 285-288
    • Hill, T.L.1
  • 29
    • 68149099439 scopus 로고    scopus 로고
    • Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation
    • Fodera V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, Leone M. Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation. J Phys Chem B 2009;113:10830-10837.
    • (2009) J Phys Chem B , vol.113 , pp. 10830-10837
    • Fodera, V.1    Cataldo, S.2    Librizzi, F.3    Pignataro, B.4    Spiccia, P.5    Leone, M.6
  • 31
    • 79953730595 scopus 로고    scopus 로고
    • Self-folding and aggregation of amyloid nanofibrils
    • Paparcone R, Cranford SW, Buehler MJ. Self-folding and aggregation of amyloid nanofibrils. Nanoscale 2011;3:1748-1755.
    • (2011) Nanoscale , vol.3 , pp. 1748-1755
    • Paparcone, R.1    Cranford, S.W.2    Buehler, M.J.3
  • 33
    • 33846005437 scopus 로고    scopus 로고
    • Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils
    • Fändrich M. Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils. J Mol Biol 2007;365:1266-1270.
    • (2007) J Mol Biol , vol.365 , pp. 1266-1270
    • Fändrich, M.1
  • 34
    • 77955792312 scopus 로고    scopus 로고
    • Insight into the correlation between lag time and aggregation rate in the kinetics of protein aggregation
    • Auer S, Kashchiev D. Insight into the correlation between lag time and aggregation rate in the kinetics of protein aggregation. Proteins 2010;78:2412-2416.
    • (2010) Proteins , vol.78 , pp. 2412-2416
    • Auer, S.1    Kashchiev, D.2
  • 35
    • 25444522601 scopus 로고    scopus 로고
    • Thermodynamics of Aβ(1-40) amyloid fibril elongation
    • O'Nuallain B, Shivaprasad S, Kheterpal I, Wetzel R. Thermodynamics of Aβ(1-40) amyloid fibril elongation. Biochem 2005;44:12709-12718.
    • (2005) Biochem , vol.44 , pp. 12709-12718
    • O'Nuallain, B.1    Shivaprasad, S.2    Kheterpal, I.3    Wetzel, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.