-
1
-
-
0014198263
-
Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle
-
Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 1967; 242: 2278-82.
-
(1967)
J. Biol. Chem.
, vol.242
, pp. 2278-2282
-
-
Holloszy, J.O.1
-
2
-
-
24644478044
-
Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise
-
Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 2005; 19: 1498-500.
-
(2005)
FASEB J.
, vol.19
, pp. 1498-1500
-
-
Mahoney, D.J.1
Parise, G.2
Melov, S.3
Safdar, A.4
Tarnopolsky, M.A.5
-
3
-
-
0037095899
-
Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes
-
Pilegaard H, Keller C, Steensberg A et al. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. J. Physiol. 2002; 541: 261-71.
-
(2002)
J. Physiol.
, vol.541
, pp. 261-271
-
-
Pilegaard, H.1
Keller, C.2
Steensberg, A.3
-
4
-
-
0036128097
-
Adaptations of skeletal muscle to prolonged, intense endurance training
-
Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin. Exp. Pharmacol. Physiol. 2002; 29: 218-22.
-
(2002)
Clin. Exp. Pharmacol. Physiol.
, vol.29
, pp. 218-222
-
-
Hawley, J.A.1
-
5
-
-
65649085174
-
Exercise: It's the real thing!
-
Hawley JA, Holloszy JO. Exercise: It's the real thing!. Nutr. Rev. 2009; 67: 172-8.
-
(2009)
Nutr. Rev.
, vol.67
, pp. 172-178
-
-
Hawley, J.A.1
Holloszy, J.O.2
-
6
-
-
34147100819
-
Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise
-
Joseph AM, Pilegaard H, Litvintsev A, Leick L, Hood DA. Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise. Essays Biochem. 2006; 42: 13-29.
-
(2006)
Essays Biochem.
, vol.42
, pp. 13-29
-
-
Joseph, A.M.1
Pilegaard, H.2
Litvintsev, A.3
Leick, L.4
Hood, D.A.5
-
7
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1
-
Baar K, Wende AR, Jones THE et al. Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002; 16: 1879-86.
-
(2002)
FASEB J.
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.H.E.3
-
8
-
-
78649710608
-
Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle
-
Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J. Physiol. 2010; 588: 4795-810.
-
(2010)
J. Physiol.
, vol.588
, pp. 4795-4810
-
-
Perry, C.G.1
Lally, J.2
Holloway, G.P.3
Heigenhauser, G.J.4
Bonen, A.5
Spriet, L.L.6
-
9
-
-
0037029049
-
Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells
-
Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286: 81-9.
-
(2002)
Gene
, vol.286
, pp. 81-89
-
-
Scarpulla, R.C.1
-
10
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005; 1: 361-70.
-
(2005)
Cell Metab.
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
11
-
-
8844276054
-
Regulation of muscle fiber type and running endurance by PPARd
-
Wang Y-X, Zhang C-L, Yu RT et al. Regulation of muscle fiber type and running endurance by PPARd. PLoS Biol. 2004; 2: 1532-9.
-
(2004)
PLoS Biol.
, vol.2
, pp. 1532-1539
-
-
Wang, Y.-X.1
Zhang, C.-L.2
Yu, R.T.3
-
12
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115-24.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
-
13
-
-
0042405041
-
Peroxisome proliferator-activated receptors (PPARS): Regulators of gene expression in heart and skeletal muscle
-
Gilde AJ, Van Bilsen M. Peroxisome proliferator-activated receptors (PPARS): Regulators of gene expression in heart and skeletal muscle. Acta Physiol. Scand. 2003; 178: 425-34.
-
(2003)
Acta Physiol. Scand.
, vol.178
, pp. 425-434
-
-
Gilde, A.J.1
Van Bilsen, M.2
-
14
-
-
0030863587
-
Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase
-
Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J. Appl. Physiol. 1997; 83: 1104-9.
-
(1997)
J. Appl. Physiol.
, vol.83
, pp. 1104-1109
-
-
Rasmussen, B.B.1
Winder, W.W.2
-
15
-
-
12244267094
-
Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise
-
Yu M, Stepto NK, Chibalin AV et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J. Physiol. 2002; 546: 327-35.
-
(2002)
J. Physiol.
, vol.546
, pp. 327-335
-
-
Yu, M.1
Stepto, N.K.2
Chibalin, A.V.3
-
16
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA 2007; 104: 12017-22.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 12017-12022
-
-
Jäger, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
17
-
-
42449161465
-
AMP-activated protein kinase regulates GLUT-4 transcription by phosphorylating histone deacetylase 5
-
McGee SL, van Denderen BJW, Howlett KF et al. AMP-activated protein kinase regulates GLUT-4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008; 57: 860-7.
-
(2008)
Diabetes
, vol.57
, pp. 860-867
-
-
McGee, S.L.1
van Denderen, B.J.W.2
Howlett, K.F.3
-
18
-
-
0035859836
-
Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor
-
Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc. Natl. Acad. Sci. USA 2001; 98: 9713-8.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 9713-9718
-
-
Knutti, D.1
Kressler, D.2
Kralli, A.3
-
19
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1
-
Puigserver P, Rhee J, Lin J et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol. Cell 2001; 8: 971-82.
-
(2001)
Mol. Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
Rhee, J.2
Lin, J.3
-
20
-
-
21244477127
-
Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway
-
Akimoto T, Pohnert SC, Li P et al. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 2005; 280: 195 87-93.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.195
, pp. 87-93
-
-
Akimoto, T.1
Pohnert, S.C.2
Li, P.3
-
21
-
-
33745149291
-
p53 regulates mitochondrial respiration
-
Matoba S, Kang J-G, Patino WD et al. p53 regulates mitochondrial respiration. Science 2006; 312: 1650-3.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
Kang, J.-G.2
Patino, W.D.3
-
22
-
-
70349655709
-
p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content
-
Park J-Y, Wang P-Y, Matsumoto T et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ. Res. 2009; 105: 705-12.
-
(2009)
Circ. Res.
, vol.105
, pp. 705-712
-
-
Park, J.-Y.1
Wang, P.-Y.2
Matsumoto, T.3
-
23
-
-
66249089036
-
Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle
-
Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol. Genomics 2009; 37: 58-66.
-
(2009)
Physiol. Genomics
, vol.37
, pp. 58-66
-
-
Saleem, A.1
Adhihetty, P.J.2
Hood, D.A.3
-
24
-
-
84880746018
-
Acute exercise induces p53 translocation to the mitochondria and promotes a p53-Tfam-mtDNA complex in skeletal muscle
-
Saleem A, Hood DA. Acute exercise induces p53 translocation to the mitochondria and promotes a p53-Tfam-mtDNA complex in skeletal muscle. J. Physiol. 2013; 591: 3625-36.
-
(2013)
J. Physiol.
, vol.591
, pp. 3625-3636
-
-
Saleem, A.1
Hood, D.A.2
-
25
-
-
9444226974
-
Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: Association with IL-6 gene transcription during contraction
-
Chan MH, McGee SL, Watt MJ, Hargreaves M, Febbraio MA. Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: Association with IL-6 gene transcription during contraction. FASEB J. 2004; 18: 1785-7.
-
(2004)
FASEB J.
, vol.18
, pp. 1785-1787
-
-
Chan, M.H.1
McGee, S.L.2
Watt, M.J.3
Hargreaves, M.4
Febbraio, M.A.5
-
27
-
-
11144292192
-
Skeletal muscle adaptation: Training twice every second day versus training once daily
-
Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK. Skeletal muscle adaptation: Training twice every second day versus training once daily. J. Appl. Physiol. 2005; 98: 93-9.
-
(2005)
J. Appl. Physiol.
, vol.98
, pp. 93-99
-
-
Hansen, A.K.1
Fischer, C.P.2
Plomgaard, P.3
Andersen, J.L.4
Saltin, B.5
Pedersen, B.K.6
-
28
-
-
84877120137
-
Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: Implications for mitochondrial biogenesis
-
Bartlett JD, Louhelainen J, Iqbal Z et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: Implications for mitochondrial biogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 304: R450-8.
-
(2013)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.304
-
-
Bartlett, J.D.1
Louhelainen, J.2
Iqbal, Z.3
-
29
-
-
78049530840
-
Training with low muscle glycogen enhances fat metabolism in well-trained cyclists
-
Hulston CJ, Venables MC, Mann CH et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med. Sci. Sports Exerc. 2010; 42: 2046-55.
-
(2010)
Med. Sci. Sports Exerc.
, vol.42
, pp. 2046-2055
-
-
Hulston, C.J.1
Venables, M.C.2
Mann, C.H.3
-
30
-
-
66349132499
-
Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle
-
Morton JP, Croft L, Bartlett JD et al. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J. Appl. Physiol. 2009; 106: 1513-21.
-
(2009)
J. Appl. Physiol.
, vol.106
, pp. 1513-1521
-
-
Morton, J.P.1
Croft, L.2
Bartlett, J.D.3
-
31
-
-
84876288029
-
Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle
-
Psilander N, Frank P, Flockhart M, Sahlin K. Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle. Eur. J. Appl. Physiol. 2013; 113: 951-63.
-
(2013)
Eur. J. Appl. Physiol.
, vol.113
, pp. 951-963
-
-
Psilander, N.1
Frank, P.2
Flockhart, M.3
Sahlin, K.4
-
32
-
-
33746644497
-
Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance and GLUT-4 mRNA expression in contracting human skeletal muscle
-
Steinberg GR, Watt MJ, McGee SL et al. Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance and GLUT-4 mRNA expression in contracting human skeletal muscle. Appl. Physiol. Nutr. Metab. 2006; 31: 302-12.
-
(2006)
Appl. Physiol. Nutr. Metab.
, vol.31
, pp. 302-312
-
-
Steinberg, G.R.1
Watt, M.J.2
McGee, S.L.3
-
33
-
-
75149179137
-
Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen
-
Yeo WK, McGee SL, Carey AL et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp. Physiol. 2010; 95: 351-8.
-
(2010)
Exp. Physiol.
, vol.95
, pp. 351-358
-
-
Yeo, W.K.1
McGee, S.L.2
Carey, A.L.3
-
34
-
-
57349187147
-
Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens
-
Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J. Appl. Physiol. 2008; 105: 1462-70.
-
(2008)
J. Appl. Physiol.
, vol.105
, pp. 1462-1470
-
-
Yeo, W.K.1
Paton, C.D.2
Garnham, A.P.3
Burke, L.M.4
Carey, A.L.5
Hawley, J.A.6
-
35
-
-
84859621618
-
Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38 and p53 phosphorylation in human skeletal muscle
-
Bartlett JD, Hwa JC, Jeong TS et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38 and p53 phosphorylation in human skeletal muscle. J. Appl. Physiol. 2012; 112: 1135-43.
-
(2012)
J. Appl. Physiol.
, vol.112
, pp. 1135-1143
-
-
Bartlett, J.D.1
Hwa, J.C.2
Jeong, T.S.3
-
36
-
-
69049102233
-
Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content
-
Ljubicic V, Hood DA. Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content. Am. J. Physiol. Endocrinol. Metab. 2009; 297: E749-58.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
-
-
Ljubicic, V.1
Hood, D.A.2
-
37
-
-
57849090443
-
The glycogen-binding domain on the AMPK α subunit allows the kinase to act as a glycogen sensor
-
McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK α subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009; 9: 23-34.
-
(2009)
Cell Metab.
, vol.9
, pp. 23-34
-
-
McBride, A.1
Ghilagaber, S.2
Nikolaev, A.3
Hardie, D.G.4
-
38
-
-
34547505089
-
Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle
-
Garcia-Roves P, Huss JM, Han DH et al. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc. Natl. Acad. Sci. USA 2007; 19: 10 709-13.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.19
-
-
Garcia-Roves, P.1
Huss, J.M.2
Han, D.H.3
-
39
-
-
84885782133
-
Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂) activity in rat skeletal muscle
-
Philp A, MacKenzie MG, Belew MY et al. Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂) activity in rat skeletal muscle. PLoS ONE 2013; 8: e77200.
-
(2013)
PLoS ONE
, vol.8
-
-
Philp, A.1
MacKenzie, M.G.2
Belew, M.Y.3
-
40
-
-
34247241629
-
Reduced plasma free fatty acid availability during exercise: Effect on gene expression
-
Tunstall RJ, McAinch AJ, Hargreaves M, van Loon LJ, Cameron-Smith D. Reduced plasma free fatty acid availability during exercise: Effect on gene expression. Eur. J. Appl. Physiol. 2007; 99: 485-93.
-
(2007)
Eur. J. Appl. Physiol.
, vol.99
, pp. 485-493
-
-
Tunstall, R.J.1
McAinch, A.J.2
Hargreaves, M.3
van Loon, L.J.4
Cameron-Smith, D.5
-
41
-
-
77958020437
-
Carbohydrate availability and training adaptation: Effects on cell metabolism
-
Hawley JA, Burke LM. Carbohydrate availability and training adaptation: Effects on cell metabolism. Exerc. Sports Sci. Rev. 2010; 38: 152-60.
-
(2010)
Exerc. Sports Sci. Rev.
, vol.38
, pp. 152-160
-
-
Hawley, J.A.1
Burke, L.M.2
-
42
-
-
84893192028
-
Nutritional strategies to modulate the adaptive response to endurance training
-
Hawley JA. Nutritional strategies to modulate the adaptive response to endurance training. Nestle Nutr. Inst. Workshop Ser. 2013; 75: 1-14.
-
(2013)
Nestle Nutr. Inst. Workshop Ser.
, vol.75
, pp. 1-14
-
-
Hawley, J.A.1
|