메뉴 건너뛰기




Volumn 55, Issue 8, 2014, Pages 1764-1786

A rough set-based incremental approach for learning knowledge in dynamic incomplete information systems

Author keywords

Incomplete information systems; Incremental learning; Knowledge discovery; Rough set theory

Indexed keywords

BIG DATA; DATA MINING; ROUGH SET THEORY;

EID: 84905905459     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2014.05.009     Document Type: Article
Times cited : (82)

References (85)
  • 1
    • 0012646033 scopus 로고    scopus 로고
    • New incremental learning algorithm in the framework of rough set theory
    • W.C. Bang, and Z. Bien New incremental learning algorithm in the framework of rough set theory Int. J. Fuzzy Syst. 1 1999 25 36
    • (1999) Int. J. Fuzzy Syst. , vol.1 , pp. 25-36
    • Bang, W.C.1    Bien, Z.2
  • 3
    • 6344270761 scopus 로고    scopus 로고
    • Incremental induction of decision rules from dominance-based rough approximations
    • J. Blaszczynski, and R. Slowinski Incremental induction of decision rules from dominance-based rough approximations Electron. Notes Theor. Comput. Sci. 82 2003 40 51
    • (2003) Electron. Notes Theor. Comput. Sci. , vol.82 , pp. 40-51
    • Blaszczynski, J.1    Slowinski, R.2
  • 5
    • 0040204986 scopus 로고
    • Incremental learning of production rules from examples under uncertainty: A rough set approach
    • C.C. Chan Incremental learning of production rules from examples under uncertainty: a rough set approach Int. J. Softw. Eng. Knowl. Eng. 1 1991 439 461
    • (1991) Int. J. Softw. Eng. Knowl. Eng. , vol.1 , pp. 439-461
    • Chan, C.C.1
  • 6
    • 0032093405 scopus 로고    scopus 로고
    • A rough set approach to attribute generalization in data mining
    • C.C. Chan A rough set approach to attribute generalization in data mining Inf. Sci. 107 1998 177 194
    • (1998) Inf. Sci. , vol.107 , pp. 177-194
    • Chan, C.C.1
  • 7
    • 77956936931 scopus 로고    scopus 로고
    • A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values
    • H.M. Chen, T.R. Li, S.J. Qiao, and D. Ruan A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values Int. J. Intell. Syst. 25 2010 1005 1026
    • (2010) Int. J. Intell. Syst. , vol.25 , pp. 1005-1026
    • Chen, H.M.1    Li, T.R.2    Qiao, S.J.3    Ruan, D.4
  • 8
    • 84871838559 scopus 로고    scopus 로고
    • A rough-set based incremental approach for updating approximations under dynamic maintenance environments
    • H.M. Chen, T.R. Li, D. Ruan, J.H. Lin, and C.X. Hu A rough-set based incremental approach for updating approximations under dynamic maintenance environments IEEE Trans. Knowl. Data Eng. 25 2013 274 284
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , pp. 274-284
    • Chen, H.M.1    Li, T.R.2    Ruan, D.3    Lin, J.H.4    Hu, C.X.5
  • 9
    • 78649779129 scopus 로고    scopus 로고
    • The incremental method for fast computing the rough fuzzy approximations
    • Y. Cheng The incremental method for fast computing the rough fuzzy approximations Data Knowl. Eng. 70 2011 84 100
    • (2011) Data Knowl. Eng. , vol.70 , pp. 84-100
    • Cheng, Y.1
  • 12
    • 79960115670 scopus 로고    scopus 로고
    • Attribute dynamics in rough sets
    • LNCS
    • D. Ciucci Attribute dynamics in rough sets Proceedings of ISMIS11 LNCS vol. 6804 2011 43 51
    • (2011) Proceedings of ISMIS11 , vol.6804 , pp. 43-51
    • Ciucci, D.1
  • 13
    • 84860127431 scopus 로고    scopus 로고
    • Temporal dynamics in information tables
    • D. Ciucci Temporal dynamics in information tables Fundam. Inform. 115 2012 57 74
    • (2012) Fundam. Inform. , vol.115 , pp. 57-74
    • Ciucci, D.1
  • 14
    • 67349251267 scopus 로고    scopus 로고
    • Rule induction based on an incremental rough set
    • Y. Fan, T. Tseng, C. Chern, and C. Huang Rule induction based on an incremental rough set Expert Syst. Appl. 36 2009 11439 11450
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11439-11450
    • Fan, Y.1    Tseng, T.2    Chern, C.3    Huang, C.4
  • 15
    • 0001905486 scopus 로고
    • Knowledge acquisition under uncertainty - A rough set approach
    • J.W. Grzymala-Busse Knowledge acquisition under uncertainty - a rough set approach J. Intell. Robot. Syst. 1 1988 3 16
    • (1988) J. Intell. Robot. Syst. , vol.1 , pp. 3-16
    • Grzymala-Busse, J.W.1
  • 16
    • 0031189666 scopus 로고    scopus 로고
    • A new version of the rule induction system LERS
    • J.W. Grzymala-Busse A new version of the rule induction system LERS Fundam. Inform. 31 1997 27 39
    • (1997) Fundam. Inform. , vol.31 , pp. 27-39
    • Grzymala-Busse, J.W.1
  • 18
    • 35048890498 scopus 로고    scopus 로고
    • Data with missing attribute values: Generalization of indiscernibility relation and rule induction
    • J.W. Grzymala-Busse Data with missing attribute values: generalization of indiscernibility relation and rule induction Trans. Rough Sets I 2004 78 95
    • (2004) Trans. Rough Sets i , pp. 78-95
    • Grzymala-Busse, J.W.1
  • 19
    • 34248198229 scopus 로고    scopus 로고
    • Characteristic relations for incomplete data: A generalization of the indiscernibility relation
    • J.W. Grzymala-Busse Characteristic relations for incomplete data: a generalization of the indiscernibility relation Trans. Rough Sets IV 2005 58 68
    • (2005) Trans. Rough Sets , vol.4 , pp. 58-68
    • Grzymala-Busse, J.W.1
  • 20
    • 51349116018 scopus 로고    scopus 로고
    • Three approaches to missing attribute values: A rough set perspective
    • J.W. Grzymala-Busse Three approaches to missing attribute values: a rough set perspective Stud. Comput. Intell. 118 2008 139 152
    • (2008) Stud. Comput. Intell. , vol.118 , pp. 139-152
    • Grzymala-Busse, J.W.1
  • 22
    • 74049113341 scopus 로고    scopus 로고
    • Increasing incompleteness of data sets - A strategy for inducing better rule sets
    • J.W. Grzymala-Busse, and W.J. Grzymala-Busse Increasing incompleteness of data sets - a strategy for inducing better rule sets Stud. Comput. Intell. 262 2010 345 365
    • (2010) Stud. Comput. Intell. , vol.262 , pp. 345-365
    • Grzymala-Busse, J.W.1    Grzymala-Busse, W.J.2
  • 24
    • 33645990015 scopus 로고    scopus 로고
    • Incremental attribute reduction based on elementary sets
    • LNAI
    • F. Hu, G.Y. Wang, H. Huang, and Y. Wu Incremental attribute reduction based on elementary sets RSFDGrC2005 LNAI vol. 3641 2005 185 193
    • (2005) RSFDGrC2005 , vol.3641 , pp. 185-193
    • Hu, F.1    Wang, G.Y.2    Huang, H.3    Wu, Y.4
  • 25
    • 0346972419 scopus 로고    scopus 로고
    • Deriving two-stage learning sequences from knowledge in fuzzy sequential pattern mining
    • Y.C. Hu, G.H. Tzeng, and C.M. Chen Deriving two-stage learning sequences from knowledge in fuzzy sequential pattern mining Inf. Sci. 159 2004 69 86
    • (2004) Inf. Sci. , vol.159 , pp. 69-86
    • Hu, Y.C.1    Tzeng, G.H.2    Chen, C.M.3
  • 27
    • 4944255708 scopus 로고    scopus 로고
    • Algorithms for mining association rules in bag databases
    • P.Y. Hsu, Y.L. Chen, and C.C. Ling Algorithms for mining association rules in bag databases Inf. Sci. 166 2004 31 47
    • (2004) Inf. Sci. , vol.166 , pp. 31-47
    • Hsu, P.Y.1    Chen, Y.L.2    Ling, C.C.3
  • 28
    • 14944360441 scopus 로고    scopus 로고
    • Missing data methods for generalized linear models: A comparative review
    • J.G. Ibrahim, M.H. Chen, S.R. Lipsitz, and A.H. Herring Missing data methods for generalized linear models: a comparative review J. Am. Stat. Assoc. 100 2005 332 346
    • (2005) J. Am. Stat. Assoc. , vol.100 , pp. 332-346
    • Ibrahim, J.G.1    Chen, M.H.2    Lipsitz, S.R.3    Herring, A.H.4
  • 29
    • 52949142738 scopus 로고    scopus 로고
    • Formal reasoning with rough sets in multiple-source approximation systems
    • M. Khan, and M. Banerjee Formal reasoning with rough sets in multiple-source approximation systems Int. J. Approx. Reason. 49 2008 466 477
    • (2008) Int. J. Approx. Reason. , vol.49 , pp. 466-477
    • Khan, M.1    Banerjee, M.2
  • 30
    • 0032294902 scopus 로고    scopus 로고
    • Rough set approach to incomplete information system
    • M. Kryszkiewicz Rough set approach to incomplete information system Inf. Sci. 112 1998 39 49
    • (1998) Inf. Sci. , vol.112 , pp. 39-49
    • Kryszkiewicz, M.1
  • 31
    • 0033079944 scopus 로고    scopus 로고
    • Rules in incomplete information systems
    • M. Kryszkiewicz Rules in incomplete information systems Inf. Sci. 113 1999 271 292
    • (1999) Inf. Sci. , vol.113 , pp. 271-292
    • Kryszkiewicz, M.1
  • 32
    • 2542480962 scopus 로고    scopus 로고
    • Mining massive document collections by the WEBSOM method
    • K. Lagus, S. Kaski, and T. Kohonen Mining massive document collections by the WEBSOM method Inf. Sci. 163 2004 135 156
    • (2004) Inf. Sci. , vol.163 , pp. 135-156
    • Lagus, K.1    Kaski, S.2    Kohonen, T.3
  • 33
    • 16244396746 scopus 로고    scopus 로고
    • Knowledge acquisition in incomplete information systems: A rough set approach
    • Y. Leung, W.Z. Wu, and W.X. Zhang Knowledge acquisition in incomplete information systems: a rough set approach Eur. J. Oper. Res. 168 2006 164 180
    • (2006) Eur. J. Oper. Res. , vol.168 , pp. 164-180
    • Leung, Y.1    Wu, W.Z.2    Zhang, W.X.3
  • 34
    • 81155139533 scopus 로고    scopus 로고
    • An interval set model for learning rules from incomplete information table
    • H.X. Li, M.H. Wang, X.Z. Zhou, and J.B. Zhao An interval set model for learning rules from incomplete information table Int. J. Approx. Reason. 53 2012 24 37
    • (2012) Int. J. Approx. Reason. , vol.53 , pp. 24-37
    • Li, H.X.1    Wang, M.H.2    Zhou, X.Z.3    Zhao, J.B.4
  • 35
    • 84870063097 scopus 로고    scopus 로고
    • Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction
    • J.H. Li, C.L. Mei, and Y.J. Lv Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction Int. J. Approx. Reason. 54 2013 149 165
    • (2013) Int. J. Approx. Reason. , vol.54 , pp. 149-165
    • Li, J.H.1    Mei, C.L.2    Lv, Y.J.3
  • 36
    • 84879223200 scopus 로고    scopus 로고
    • Dynamic maintenance of approximations in dominance-based rough set approach under the variation of the object set
    • S.Y. Li, T.R. Li, and D. Liu Dynamic maintenance of approximations in dominance-based rough set approach under the variation of the object set Int. J. Intell. Syst. 28 2013 729 751
    • (2013) Int. J. Intell. Syst. , vol.28 , pp. 729-751
    • Li, S.Y.1    Li, T.R.2    Liu, D.3
  • 37
    • 84872925023 scopus 로고    scopus 로고
    • Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set
    • S.Y. Li, T.R. Li, and D. Liu Incremental updating approximations in dominance-based rough sets approach under the variation of the attribute set Knowl.-Based Syst. 40 2013 17 26
    • (2013) Knowl.-Based Syst. , vol.40 , pp. 17-26
    • Li, S.Y.1    Li, T.R.2    Liu, D.3
  • 38
    • 4544246194 scopus 로고    scopus 로고
    • An incremental algorithm for mining classification rules in incomplete information systems
    • IEEE Press
    • T.R. Li, N. Yang, Y. Xu, and J. Ma An incremental algorithm for mining classification rules in incomplete information systems Proceedings of NAFIPS 2004 IEEE Press 446 449
    • (2004) Proceedings of NAFIPS , pp. 446-449
    • Li, T.R.1    Yang, N.2    Xu, Y.3    Ma, J.4
  • 39
    • 34248165925 scopus 로고    scopus 로고
    • A rough sets based characteristic relation approach for dynamic attribute generalization in data mining
    • T.R. Li, D. Ruan, W. Geert, J. Song, and Y. Xu A rough sets based characteristic relation approach for dynamic attribute generalization in data mining Knowl.-Based Syst. 20 2007 485 494
    • (2007) Knowl.-Based Syst. , vol.20 , pp. 485-494
    • Li, T.R.1    Ruan, D.2    Geert, W.3    Song, J.4    Xu, Y.5
  • 40
    • 31944451673 scopus 로고    scopus 로고
    • Looking into the seeds of time: Discovering temporal patterns in large transaction sets
    • Y. Li, S. Zhu, X.S. Wang, and S. Jajodia Looking into the seeds of time: discovering temporal patterns in large transaction sets Inf. Sci. 176 2006 1003 1031
    • (2006) Inf. Sci. , vol.176 , pp. 1003-1031
    • Li, Y.1    Zhu, S.2    Wang, X.S.3    Jajodia, S.4
  • 41
    • 0018518835 scopus 로고
    • On semantic issues connected with incomplete information databases
    • W.J. Lipski On semantic issues connected with incomplete information databases ACM Trans. Database Syst. 4 1979 262 296
    • (1979) ACM Trans. Database Syst. , vol.4 , pp. 262-296
    • Lipski, W.J.1
  • 43
    • 70349119480 scopus 로고    scopus 로고
    • An incremental approach for inducing knowledge from dynamic information systems
    • D. Liu, T.R. Li, D. Ruan, and W.L. Zou An incremental approach for inducing knowledge from dynamic information systems Fundam. Inform. 94 2009 245 260
    • (2009) Fundam. Inform. , vol.94 , pp. 245-260
    • Liu, D.1    Li, T.R.2    Ruan, D.3    Zou, W.L.4
  • 44
    • 80053331510 scopus 로고    scopus 로고
    • Incremental learning optimization on knowledge discovery in dynamic business intelligent systems
    • D. Liu, T.R. Li, D. Ruan, and J.B. Zhang Incremental learning optimization on knowledge discovery in dynamic business intelligent systems J. Glob. Optim. 51 2011 325 344
    • (2011) J. Glob. Optim. , vol.51 , pp. 325-344
    • Liu, D.1    Li, T.R.2    Ruan, D.3    Zhang, J.B.4
  • 49
    • 79957597759 scopus 로고    scopus 로고
    • Probabilistic model criteria with decision-theoretic rough sets
    • D. Liu, T.R. Li, and D. Ruan Probabilistic model criteria with decision-theoretic rough sets Inf. Sci. 181 2011 3709 3722
    • (2011) Inf. Sci. , vol.181 , pp. 3709-3722
    • Liu, D.1    Li, T.R.2    Ruan, D.3
  • 50
    • 84905910719 scopus 로고    scopus 로고
    • Incremental learning researches on rough set theory: Status and future
    • D. Liu, and D.C. Liang Incremental learning researches on rough set theory: status and future Int. J. Rough Sets. Data Anal. 1 2014 99 112
    • (2014) Int. J. Rough Sets. Data Anal. , vol.1 , pp. 99-112
    • Liu, D.1    Liang, D.C.2
  • 51
    • 84888023478 scopus 로고    scopus 로고
    • Incorporating logistic regression to decision-theoretic rough sets for classifications
    • D. Liu, T.R. Li, and D.C. Liang Incorporating logistic regression to decision-theoretic rough sets for classifications Int. J. Approx. Reason. 55 2014 197 210
    • (2014) Int. J. Approx. Reason. , vol.55 , pp. 197-210
    • Liu, D.1    Li, T.R.2    Liang, D.C.3
  • 52
    • 84881312964 scopus 로고    scopus 로고
    • Incremental approaches for updating approximations in set-valued ordered information systems
    • C. Luo, T.R. Li, H.M. Chen, and D. Liu Incremental approaches for updating approximations in set-valued ordered information systems Knowl.-Based Syst. 50 2013 218 233
    • (2013) Knowl.-Based Syst. , vol.50 , pp. 218-233
    • Luo, C.1    Li, T.R.2    Chen, H.M.3    Liu, D.4
  • 53
    • 84888621954 scopus 로고    scopus 로고
    • Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization
    • C. Luo, T.R. Li, and J.B. Zhang Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization Inf. Sci. 257 2014 210 228
    • (2014) Inf. Sci. , vol.257 , pp. 210-228
    • Luo, C.1    Li, T.R.2    Zhang, J.B.3
  • 55
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application on three medical domains
    • R.S. Michalski, I. Mozetic, J. Hong, and N. Lavrac The multi-purpose incremental learning system AQ15 and its testing application on three medical domains Proceedings of AAAI-86 1986 1041 1045
    • (1986) Proceedings of AAAI-86 , pp. 1041-1045
    • Michalski, R.S.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 56
    • 33751117356 scopus 로고
    • Dynamic information systems
    • E. Orlowska Dynamic information systems Fundam. Inform. 5 1982 101 118
    • (1982) Fundam. Inform. , vol.5 , pp. 101-118
    • Orlowska, E.1
  • 57
    • 2342547784 scopus 로고    scopus 로고
    • Pretopologies and dynamic spaces
    • P. Pagliani Pretopologies and dynamic spaces Fundam. Inform. 59 2004 221 239
    • (2004) Fundam. Inform. , vol.59 , pp. 221-239
    • Pagliani, P.1
  • 60
    • 0036027401 scopus 로고    scopus 로고
    • Rough sets, decision algorithm and Bayes' theorem
    • Z. Pawlak Rough sets, decision algorithm and Bayes' theorem Eur. J. Oper. Res. 136 2002 181 189
    • (2002) Eur. J. Oper. Res. , vol.136 , pp. 181-189
    • Pawlak, Z.1
  • 61
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Z. Pawlak, and A. Skowron Rudiments of rough sets Inf. Sci. 177 2007 3 27
    • (2007) Inf. Sci. , vol.177 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 62
    • 33749667344 scopus 로고    scopus 로고
    • Rough sets: Some extensions
    • Z. Pawlak, and A. Skowron Rough sets: some extensions Inf. Sci. 177 2007 28 40
    • (2007) Inf. Sci. , vol.177 , pp. 28-40
    • Pawlak, Z.1    Skowron, A.2
  • 65
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, P. Witold, and C.Y. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artif. Intell. 174 2010 597 618
    • (2010) Artif. Intell. , vol.174 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Witold, P.3    Dang, C.Y.4
  • 66
    • 0347226876 scopus 로고
    • Rough logic for multi-agent systems
    • LNCS
    • C. Rauszer Rough logic for multi-agent systems Logic at Work 1992 LNCS vol. 808 1994 161 181
    • (1994) Logic at Work 1992 , vol.808 , pp. 161-181
    • Rauszer, C.1
  • 67
    • 34547696888 scopus 로고    scopus 로고
    • Handling missing values when applying classification models
    • M. Saar-Tsechansky, and F. Provost Handling missing values when applying classification models J. Mach. Learn. Res. 8 2007 1623 1657
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1623-1657
    • Saar-Tsechansky, M.1    Provost, F.2
  • 68
    • 0029307419 scopus 로고
    • Data-based acquisition and incremental modification of classification rules
    • L. Shan, and W. Ziarko Data-based acquisition and incremental modification of classification rules Comput. Intell. 11 1995 357 370
    • (1995) Comput. Intell. , vol.11 , pp. 357-370
    • Shan, L.1    Ziarko, W.2
  • 70
    • 0035414869 scopus 로고    scopus 로고
    • Incomplete information tables and rough classification
    • J. Stefanowski, and A. Tsoukias Incomplete information tables and rough classification Comput. Intell. 17 2001 545 566
    • (2001) Comput. Intell. , vol.17 , pp. 545-566
    • Stefanowski, J.1    Tsoukias, A.2
  • 72
    • 80053315445 scopus 로고    scopus 로고
    • Extraction of experts' decision process from clinical databases using rough set model
    • S. Tsumoto Extraction of experts' decision process from clinical databases using rough set model Proceedings of PKDD 1997 1997 58 67
    • (1997) Proceedings of PKDD 1997 , pp. 58-67
    • Tsumoto, S.1
  • 77
    • 80051469650 scopus 로고    scopus 로고
    • A dynamic attribute reduction algorithm based on 0-1 integer programming
    • Y.T. Xu, L.S. Wang, and R.Y. Zhang A dynamic attribute reduction algorithm based on 0-1 integer programming Knowl.-Based Syst. 24 2011 1341 1347
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 1341-1347
    • Xu, Y.T.1    Wang, L.S.2    Zhang, R.Y.3
  • 78
    • 0001375356 scopus 로고    scopus 로고
    • Two views of the theory of rough sets in finite universes
    • Y.Y. Yao Two views of the theory of rough sets in finite universes Int. J. Approx. Reason. 15 1996 291 317
    • (1996) Int. J. Approx. Reason. , vol.15 , pp. 291-317
    • Yao, Y.Y.1
  • 79
    • 0032142371 scopus 로고    scopus 로고
    • Constructive and algebraic methods of the theory of rough sets
    • Y.Y. Yao Constructive and algebraic methods of the theory of rough sets Inf. Sci. 109 1998 21 47
    • (1998) Inf. Sci. , vol.109 , pp. 21-47
    • Yao, Y.Y.1
  • 81
    • 84862809634 scopus 로고    scopus 로고
    • Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems
    • J.B. Zhang, T.R. Li, D. Ruan, and D. Liu Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems Int. J. Approx. Reason. 53 2012 620 635
    • (2012) Int. J. Approx. Reason. , vol.53 , pp. 620-635
    • Zhang, J.B.1    Li, T.R.2    Ruan, D.3    Liu, D.4
  • 82
    • 84862807152 scopus 로고    scopus 로고
    • A parallel method for computing rough set approximations
    • J.B. Zhang, T.R. Li, D. Ruan, Z.Z. Gao, and C.B. Zhao A parallel method for computing rough set approximations Inf. Sci. 194 2012 209 223
    • (2012) Inf. Sci. , vol.194 , pp. 209-223
    • Zhang, J.B.1    Li, T.R.2    Ruan, D.3    Gao, Z.Z.4    Zhao, C.B.5
  • 83
    • 84888637647 scopus 로고    scopus 로고
    • Composite rough sets for dynamic data mining
    • J.B. Zhang, T.R. Li, and H.M. Chen Composite rough sets for dynamic data mining Inf. Sci. 257 2014 81 100
    • (2014) Inf. Sci. , vol.257 , pp. 81-100
    • Zhang, J.B.1    Li, T.R.2    Chen, H.M.3
  • 84
    • 84894475653 scopus 로고    scopus 로고
    • A comparison of parallel large-scale knowledge acquisition using rough set theory on different MapReduce runtime systems
    • J.B. Zhang, J.S. Wong, T.R. Li, and Y. Pan A comparison of parallel large-scale knowledge acquisition using rough set theory on different MapReduce runtime systems Int. J. Approx. Reason. 55 2014 896 907
    • (2014) Int. J. Approx. Reason. , vol.55 , pp. 896-907
    • Zhang, J.B.1    Wong, J.S.2    Li, T.R.3    Pan, Y.4
  • 85
    • 2342664664 scopus 로고    scopus 로고
    • RRIA: A rough set and rule tree based incremental knowledge acquisition algorithm
    • Z. Zheng, and G.Y. Wang RRIA: A rough set and rule tree based incremental knowledge acquisition algorithm Fundam. Inform. 59 2004 299 313
    • (2004) Fundam. Inform. , vol.59 , pp. 299-313
    • Zheng, Z.1    Wang, G.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.