메뉴 건너뛰기




Volumn , Issue , 2011, Pages 850-858

Active learning using on-line algorithms

Author keywords

Algorithms; Design; Performance; Theory

Indexed keywords

APPLICATION PROGRAMS; ARTIFICIAL INTELLIGENCE; E-LEARNING;

EID: 80052679754     PISSN: 2154817X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020553     Document Type: Conference Paper
Times cited : (17)

References (29)
  • 1
    • 0742284346 scopus 로고    scopus 로고
    • Queries revisited
    • February
    • D. Angluin. Queries revisited. Theor. Comput. Sci., 313:175-194, February 2004.
    • (2004) Theor. Comput. Sci. , vol.313 , pp. 175-194
    • Angluin, D.1
  • 2
    • 79952403428 scopus 로고    scopus 로고
    • Why label when you can search?
    • J. Attenberg and F. Provost. Why label when you can search? In KDD, 2010.
    • (2010) KDD
    • Attenberg, J.1    Provost, F.2
  • 4
    • 77955659703 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M. F. Balcan, S. Hanneke, and J. W. Vaughan. The true sample complexity of active learning. Machine Learning, 80(2-3):111-139, 2010.
    • (2010) Machine Learning , vol.80 , Issue.2-3 , pp. 111-139
    • Balcan, M.F.1    Hanneke, S.2    Vaughan, J.W.3
  • 7
    • 0000430986 scopus 로고
    • The perceptron: A model for brain functioning
    • H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics, 34(1):123-135, 1962.
    • (1962) Reviews of Modern Physics , vol.34 , Issue.1 , pp. 123-135
    • Block, H.D.1
  • 9
    • 33745738567 scopus 로고    scopus 로고
    • Worst-case analysis of selective sampling for linear classification
    • N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysis of selective sampling for linear classification. Journal of Machine Learning Research, 7:1205-1230, 2006. (Pubitemid 44015299)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1205-1230
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • Y. Weiss, B. Scḧolkopf, and J. Platt, editors, Cambridge, MA, MIT Press
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In Y. Weiss, B. Scḧolkopf, and J. Platt, editors, NIPS, pages 235-242, Cambridge, MA, 2006. MIT Press.
    • (2006) NIPS , pp. 235-242
    • Dasgupta, S.1
  • 12
    • 56449123291 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm
    • S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS, 2007.
    • (2007) NIPS
    • Dasgupta, S.1    Hsu, D.2    Monteleoni, C.3
  • 14
    • 35448949581 scopus 로고    scopus 로고
    • Internet advertising and the generalized second-price auction
    • B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized second-price auction American Economic Review, 97(1):242-259, 2007.
    • (2007) American Economic Review , vol.97 , Issue.1 , pp. 242-259
    • Edelman, B.1    Ostrovsky, M.2    Schwarz, M.3
  • 15
    • 0031624445 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. In COLT, 1998.
    • (1998) COLT
    • Freund, Y.1    Schapire, R.E.2
  • 16
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28:133-1680, 1997.
    • (1997) Machine Learning , vol.28 , pp. 133-1680
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 17
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • C. Gentile. A new approximate maximal margin classification algorithm. Machine Learning, 2:213-242, 2001.
    • (2001) Machine Learning , vol.2 , pp. 213-242
    • Gentile, C.1
  • 18
    • 79551594780 scopus 로고    scopus 로고
    • Rates of convergence in active learning
    • S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333-361, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.1 , pp. 333-361
    • Hanneke, S.1
  • 19
    • 38049082346 scopus 로고    scopus 로고
    • Conservative stemming for search and indexing
    • M.-C. Jenkins and D. Smith. Conservative stemming for search and indexing. In SIGIR, 2005.
    • (2005) SIGIR
    • Jenkins, M.-C.1    Smith, D.2
  • 20
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • A. S. B. Schölkopf, C. Burges, editor, MIT Press, Cambridge, MA
    • T. Joachims. Making large-scale support vector machine learning practical. In A. S. B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Machines
    • Joachims, T.1
  • 21
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • Springer-Verlag
    • D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In SIGIR, pages 3-12. Springer-Verlag, 1994.
    • (1994) SIGIR , pp. 3-12
    • Lewis, D.D.1    Gale, W.A.2
  • 22
    • 0031369631 scopus 로고    scopus 로고
    • Active learning with committees for text categorization
    • R. Liere and P. Tadepalli. Active learning with committees for text categorization. In AAAI, pages 591-596, 1997.
    • (1997) AAAI , pp. 591-596
    • Liere, R.1    Tadepalli, P.2
  • 23
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 24
    • 85011913774 scopus 로고
    • From on-line to batch learning
    • N. Littlestone. From on-line to batch learning. In COLT, pages 269-284, 1989.
    • (1989) COLT , pp. 269-284
    • Littlestone, N.1
  • 25
    • 0003869088 scopus 로고
    • Mistake bounds and linear-threshold learning algorithms
    • PhD thesis, Computer Science, Santa Cruz
    • N. Littlestone. Mistake Bounds and Linear-threshold Learning Algorithms. PhD thesis, Computer Science, University of California, Santa Cruz, 1989. Technical Report UCSC-CRL-89-11.
    • (1989) University of California, Technical Report UCSC-CRL-89-11
    • Littlestone, N.1
  • 26
    • 85152630870 scopus 로고    scopus 로고
    • Efficient learning with virtual threshold gates
    • W. Maass and M. K. Warmuth. Efficient learning with virtual threshold gates. Information and Computation, 141:378-386, 1997.
    • (1997) Information and Computation , vol.141 , pp. 378-386
    • Maass, W.1    Warmuth, M.K.2
  • 27
    • 56749126921 scopus 로고    scopus 로고
    • PhD thesis, Computer Science, Rutgers, The State University of New Jersey
    • C. Mesterharm. Improving On-line Learning. PhD thesis, Computer Science, Rutgers, The State University of New Jersey, 2007.
    • (2007) Improving On-line Learning
    • Mesterharm, C.1
  • 29
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16:264-280, 1971.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.