메뉴 건너뛰기




Volumn 36, Issue 9, 2009, Pages 11439-11450

Rule induction based on an incremental rough set

Author keywords

Incremental technique; Reduct; Rough set theory; Rule induction

Indexed keywords

DYNAMIC DATABASE; EXTRACTING RULES; EXTRACTION ALGORITHMS; INCREMENTAL APPROACH; INCREMENTAL TECHNIQUE; INCREMENTAL TECHNIQUES; LARGE DATABASE; ORIGINAL ALGORITHMS; REDUCT; REDUNDANT RULES; ROUGH SET; ROUGH-SET BASED; RULE INDUCTION; RULE SET;

EID: 67349251267     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.03.056     Document Type: Article
Times cited : (69)

References (45)
  • 3
    • 0043234660 scopus 로고    scopus 로고
    • Variable precision rough set theory and data discretisation: An application to corporate failure prediction
    • Beynon M.J., and Peel M.J. Variable precision rough set theory and data discretisation: An application to corporate failure prediction. Omega, International Journal of Management Science 29 (2001) 561-576
    • (2001) Omega, International Journal of Management Science , vol.29 , pp. 561-576
    • Beynon, M.J.1    Peel, M.J.2
  • 4
    • 9444239156 scopus 로고    scopus 로고
    • Certain rule learning of the inconsistent data
    • (In Chinese)
    • Bian X. Certain rule learning of the inconsistent data. Journal of East China Shipbuilding Institute 12 1 (1998) 25-30 (In Chinese)
    • (1998) Journal of East China Shipbuilding Institute , vol.12 , Issue.1 , pp. 25-30
    • Bian, X.1
  • 5
    • 6344270761 scopus 로고    scopus 로고
    • Incremental induction of decision rules from dominance-based rough approximations
    • Blaszczynski J., and Slowinski R. Incremental induction of decision rules from dominance-based rough approximations. Electronic Notes in Theoretical Computer Science 82 4 (2003) 1-12
    • (2003) Electronic Notes in Theoretical Computer Science , vol.82 , Issue.4 , pp. 1-12
    • Blaszczynski, J.1    Slowinski, R.2
  • 6
    • 25144476363 scopus 로고    scopus 로고
    • A statistics-based approach to control the quality of subclusters in incremental gravitational clustering
    • Chen C.Y., Hwang S.C., and Oyang Y.J. A statistics-based approach to control the quality of subclusters in incremental gravitational clustering. Pattern Recognition 38 (2005) 2256-2269
    • (2005) Pattern Recognition , vol.38 , pp. 2256-2269
    • Chen, C.Y.1    Hwang, S.C.2    Oyang, Y.J.3
  • 7
    • 11244353294 scopus 로고    scopus 로고
    • A methodology for dynamic data mining based on fuzzy clustering
    • Crespo F., and Weber R. A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets and Systems 150 (2005) 267-284
    • (2005) Fuzzy Sets and Systems , vol.150 , pp. 267-284
    • Crespo, F.1    Weber, R.2
  • 9
    • 0037338989 scopus 로고    scopus 로고
    • Relevance feedback icon continuous and incremental data mining association rules using frame metadata model
    • Fong J., Wong H.K., and Huang S.M. Relevance feedback icon continuous and incremental data mining association rules using frame metadata model. Knowledge-Based Systems 16 (2003) 91-100
    • (2003) Knowledge-Based Systems , vol.16 , pp. 91-100
    • Fong, J.1    Wong, H.K.2    Huang, S.M.3
  • 10
    • 0002135094 scopus 로고
    • LERS-a system for learning from examples based on rough sets
    • Slowinski R. (Ed), Kluwer Academic Publishers
    • Grzymala-Busse J.W. LERS-a system for learning from examples based on rough sets. In: Slowinski R. (Ed). Intelligent decision support (1992), Kluwer Academic Publishers 3-18
    • (1992) Intelligent decision support , pp. 3-18
    • Grzymala-Busse, J.W.1
  • 17
    • 0037692973 scopus 로고    scopus 로고
    • Feature ranking in rough sets
    • Hu K.Y., Lu Y.C., and Shi C.Y. Feature ranking in rough sets. AI Communications 16 1 (2003) 41-50
    • (2003) AI Communications , vol.16 , Issue.1 , pp. 41-50
    • Hu, K.Y.1    Lu, Y.C.2    Shi, C.Y.3
  • 18
    • 0035164864 scopus 로고    scopus 로고
    • Jan, P, Grzymala-Busse, J. W, & Zdzislaw, S. H, 2001, Melanoma prediction using data mining system LERS (COMPSAC 2001, In Proceedings of the 25th annual international computer software and applications conference, Chicago, IL, USA, October 8-12 pp. 615-620
    • Jan, P., Grzymala-Busse, J. W., & Zdzislaw, S. H. (2001). Melanoma prediction using data mining system LERS (COMPSAC 2001). In Proceedings of the 25th annual international computer software and applications conference, Chicago, IL, USA, October 8-12 (pp. 615-620).
  • 21
    • 0034128320 scopus 로고    scopus 로고
    • Relationship modeling in tourism shopping: A decision rules induction approach
    • Law R., and Au N. Relationship modeling in tourism shopping: A decision rules induction approach. Tourism Management 21 (2000) 241-249
    • (2000) Tourism Management , vol.21 , pp. 241-249
    • Law, R.1    Au, N.2
  • 22
    • 15744379219 scopus 로고    scopus 로고
    • An incremental rule extracting algorithm based on Pawlak reduction
    • Man and Cybernetics pp
    • Liu, Y., Xu, C., & Pan, Y. (2004). An incremental rule extracting algorithm based on Pawlak reduction. IEEE International Conference on Systems, Man and Cybernetics (pp. 5964-5968).
    • (2004) IEEE International Conference on Systems , pp. 5964-5968
    • Liu, Y.1    Xu, C.2    Pan, Y.3
  • 23
    • 2042476687 scopus 로고    scopus 로고
    • Mining classification rules using rough sets and neural networks
    • Li R., and Wang Z.O. Mining classification rules using rough sets and neural networks. European Journal of Operational Research 157 (2004) 439-448
    • (2004) European Journal of Operational Research , vol.157 , pp. 439-448
    • Li, R.1    Wang, Z.O.2
  • 27
    • 0032623396 scopus 로고    scopus 로고
    • An alternative verification and validation technique for an alternative knowledge representation and acquisition technique
    • Richards D., and Compton P. An alternative verification and validation technique for an alternative knowledge representation and acquisition technique. Knowledge-Based Systems 12 1-2 (1999) 55-73
    • (1999) Knowledge-Based Systems , vol.12 , Issue.1-2 , pp. 55-73
    • Richards, D.1    Compton, P.2
  • 28
    • 0343975285 scopus 로고
    • An incremental learning algorithm for constructing decision rules
    • Kluwer R.S. (Ed), Springer-Verlag
    • Shan N., and Ziarko W. An incremental learning algorithm for constructing decision rules. In: Kluwer R.S. (Ed). Rough sets, fuzzy sets and knowledge discovery (1994), Springer-Verlag 326-334
    • (1994) Rough sets, fuzzy sets and knowledge discovery , pp. 326-334
    • Shan, N.1    Ziarko, W.2
  • 29
    • 0034207737 scopus 로고    scopus 로고
    • A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems
    • Shen Q., and Chouchoulas A. A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Engineering Applications of Artificial Intelligence 13 3 (2000) 263-278
    • (2000) Engineering Applications of Artificial Intelligence , vol.13 , Issue.3 , pp. 263-278
    • Shen, Q.1    Chouchoulas, A.2
  • 30
    • 0029379597 scopus 로고
    • A neural network architecture for incremental learning
    • Shiotani S., Fukuda T., and Shibata T. A neural network architecture for incremental learning. Neurocomputing 9 (1995) 111-130
    • (1995) Neurocomputing , vol.9 , pp. 111-130
    • Shiotani, S.1    Fukuda, T.2    Shibata, T.3
  • 31
    • 33748195464 scopus 로고    scopus 로고
    • Rough set theory in analyzing the attributes of combination values for the insurance market
    • Shyng J.-Y., Wang F.-K., Tzeng G.-H., and Wu K.-S. Rough set theory in analyzing the attributes of combination values for the insurance market. Expert Systems with Applications 32 1 (2007) 56-64
    • (2007) Expert Systems with Applications , vol.32 , Issue.1 , pp. 56-64
    • Shyng, J.-Y.1    Wang, F.-K.2    Tzeng, G.-H.3    Wu, K.-S.4
  • 32
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • Skowron A., and Polkowski L. (Eds), Physica Verlag, Heidelberg
    • Stefanowski J. On rough set based approaches to induction of decision rules. In: Skowron A., and Polkowski L. (Eds). Rough sets in knowledge discovery Vol. 1 (1998), Physica Verlag, Heidelberg 500-529
    • (1998) Rough sets in knowledge discovery , vol.1 , pp. 500-529
    • Stefanowski, J.1
  • 33
    • 27744529900 scopus 로고    scopus 로고
    • Precision parameter in the variable precision rough sets model: An application
    • Su C.-T., and Hsu J.-H. Precision parameter in the variable precision rough sets model: An application. Omega, International Journal of Management Science 34 (2006) 149-157
    • (2006) Omega, International Journal of Management Science , vol.34 , pp. 149-157
    • Su, C.-T.1    Hsu, J.-H.2
  • 35
    • 67349259546 scopus 로고    scopus 로고
    • Tseng, T. L.(Bill) (1999). Quantitative approaches for information modeling. Ph.D. Dissertation, University of Iowa.
    • Tseng, T. L.(Bill) (1999). Quantitative approaches for information modeling. Ph.D. Dissertation, University of Iowa.
  • 36
    • 0000719753 scopus 로고    scopus 로고
    • Extraction of experts' decision rules from clinical databases using rough set model
    • Tsumoto S. Extraction of experts' decision rules from clinical databases using rough set model. Intelligent Data Analysis 2 3 (1998)
    • (1998) Intelligent Data Analysis , vol.2 , Issue.3
    • Tsumoto, S.1
  • 37
    • 0037316513 scopus 로고    scopus 로고
    • Automated extraction of hierarchical decision rules from clinical databases using rough set model
    • Tsumoto S. Automated extraction of hierarchical decision rules from clinical databases using rough set model. Expert Systems with Applications 24 2 (2003) 189-197
    • (2003) Expert Systems with Applications , vol.24 , Issue.2 , pp. 189-197
    • Tsumoto, S.1
  • 38
    • 0029307417 scopus 로고
    • PRIMEROSE: Probabilistic rule induction method based on rough sets and resampling methods
    • Tsumoto S., and Tanaka H. PRIMEROSE: Probabilistic rule induction method based on rough sets and resampling methods. Computational Intelligence 11 (1995) 89-405
    • (1995) Computational Intelligence , vol.11 , pp. 89-405
    • Tsumoto, S.1    Tanaka, H.2
  • 40
    • 9944238762 scopus 로고    scopus 로고
    • A rough set-based fault ranking prototype system for fault diagnosis
    • Wang Q.H., and Li J.R. A rough set-based fault ranking prototype system for fault diagnosis. Engineering Applications of Artificial Intelligence 17 8 (2004) 909-917
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , Issue.8 , pp. 909-917
    • Wang, Q.H.1    Li, J.R.2
  • 41
    • 33746881122 scopus 로고    scopus 로고
    • Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma
    • Wang X., Yang J., Jensen R., and Liu X. Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Computer Methods and Programs in Biomedicine 83 (2006) 147-156
    • (2006) Computer Methods and Programs in Biomedicine , vol.83 , pp. 147-156
    • Wang, X.1    Yang, J.2    Jensen, R.3    Liu, X.4
  • 42
    • 0036712901 scopus 로고    scopus 로고
    • A scalable, incremental learning algorithm for classification problems
    • Ye N., and Li X. A scalable, incremental learning algorithm for classification problems. Computers and Industrial Engineering 43 (2002) 677-692
    • (2002) Computers and Industrial Engineering , vol.43 , pp. 677-692
    • Ye, N.1    Li, X.2
  • 43
    • 0031644818 scopus 로고    scopus 로고
    • An incremental, probabilistic rough set approach to rule discovery
    • IEEE world congress on computational intelligence, Anchorage, AK pp
    • Zhong, N., Dong, J.-Z., Ohsuga, S., & Lin, T.-Y. (1998). An incremental, probabilistic rough set approach to rule discovery. In Fuzzy systems proceedings, IEEE world congress on computational intelligence, Anchorage, AK (pp. 933-938).
    • (1998) Fuzzy systems proceedings , pp. 933-938
    • Zhong, N.1    Dong, J.-Z.2    Ohsuga, S.3    Lin, T.-Y.4
  • 44
    • 25644439803 scopus 로고    scopus 로고
    • Relevance feedback icon ordered incremental training for GA-based classifiers
    • Zhu F., and Guan S. Relevance feedback icon ordered incremental training for GA-based classifiers. Pattern Recognition Letters 26 (2005) 2135-2151
    • (2005) Pattern Recognition Letters , vol.26 , pp. 2135-2151
    • Zhu, F.1    Guan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.