메뉴 건너뛰기




Volumn 36, Issue 9, 2014, Pages 861-871

The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish

Author keywords

Fibrosis; Mammals; Regeneration; Repair; Salamander; Scarring; Zebrafish

Indexed keywords

AMPHIBIA; ARTICLE; EPIGENETICS; FIBROSIS; FISH; IMMUNOREGULATION; MAMMAL; NONHUMAN; REGENERATION; REGENERATIVE ABILITY; REGENERATIVE MEDICINE; SALAMANDER; STEM CELL MOBILIZATION; TISSUE REPAIR; WOUND HEALING; ZEBRA FISH; ANIMAL; GENETICS; HUMAN; IMMUNOLOGY; PHYSIOLOGY;

EID: 84905899039     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201300144     Document Type: Article
Times cited : (40)

References (132)
  • 1
    • 78649845412 scopus 로고    scopus 로고
    • Regenerative medicine. Opportunities and challenges: a brief overview
    • Polak DJ. 2010. Regenerative medicine. Opportunities and challenges: a brief overview. J R Soc Interface 7: S777-81.
    • (2010) J R Soc Interface , vol.7
    • Polak, D.J.1
  • 2
    • 84875806444 scopus 로고    scopus 로고
    • How induced pluripotent stem cells are redefining personalized medicine
    • Ferreira LMR, Mostajo-Radji MA. 2013. How induced pluripotent stem cells are redefining personalized medicine. Gene 520: 1-6.
    • (2013) Gene , vol.520 , pp. 1-6
    • Ferreira, L.M.R.1    Mostajo-Radji, M.A.2
  • 3
    • 84886292766 scopus 로고    scopus 로고
    • The zebrafish as a model for complex tissue regeneration
    • Gemberling M, Bailey TJ, Hyde DR, Poss KD. 2013. The zebrafish as a model for complex tissue regeneration. Trends Genet 29: 611-20.
    • (2013) Trends Genet , vol.29 , pp. 611-620
    • Gemberling, M.1    Bailey, T.J.2    Hyde, D.R.3    Poss, K.D.4
  • 4
    • 84876279302 scopus 로고    scopus 로고
    • Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow
    • Diaz Quiroz JF, Echeverri K. 2013. Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 451: 353-64.
    • (2013) Biochem J , vol.451 , pp. 353-364
    • Diaz Quiroz, J.F.1    Echeverri, K.2
  • 6
    • 84867242963 scopus 로고    scopus 로고
    • Lens and retina regeneration: new perspectives from model organisms
    • Barbosa-Sabanero K, Hoffmann A, Judge C, Lightcap N, et al. 2012. Lens and retina regeneration: new perspectives from model organisms. Biochem J 447: 321-34.
    • (2012) Biochem J , vol.447 , pp. 321-334
    • Barbosa-Sabanero, K.1    Hoffmann, A.2    Judge, C.3    Lightcap, N.4
  • 7
    • 78651089161 scopus 로고    scopus 로고
    • Deer antlers - a model of mammalian appendage regeneration: an extensive review
    • Kierdorf U, Kierdorf H. 2011. Deer antlers - a model of mammalian appendage regeneration: an extensive review. Gerontology 57: 53-65.
    • (2011) Gerontology , vol.57 , pp. 53-65
    • Kierdorf, U.1    Kierdorf, H.2
  • 8
    • 54949153140 scopus 로고    scopus 로고
    • Comparative aspects of animal regeneration
    • Brockes JP, Kumar A. 2008. Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24: 525-49.
    • (2008) Annu Rev Cell Dev Biol , vol.24 , pp. 525-549
    • Brockes, J.P.1    Kumar, A.2
  • 9
    • 33750220712 scopus 로고    scopus 로고
    • Bridging the regeneration gap: genetic insights from diverse animal models
    • Sánchez Alvarado A, Tsonis PA. 2006. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7: 873-84.
    • (2006) Nat Rev Genet , vol.7 , pp. 873-884
    • Sánchez Alvarado, A.1    Tsonis, P.A.2
  • 10
    • 84892554477 scopus 로고    scopus 로고
    • Cardiac regeneration in non-mammalian vertebrates
    • Garcia-Gonzalez C, Morrison JI. 2014. Cardiac regeneration in non-mammalian vertebrates. Exp Cell Res 321: 58-63.
    • (2014) Exp Cell Res , vol.321 , pp. 58-63
    • Garcia-Gonzalez, C.1    Morrison, J.I.2
  • 11
    • 84872262672 scopus 로고    scopus 로고
    • Proliferation zones in the axolotl brain and regeneration of the telencephalon
    • Maden M, Manwell LA, Ormerod BK. 2013. Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev 8: 1.
    • (2013) Neural Dev , vol.8 , pp. 1
    • Maden, M.1    Manwell, L.A.2    Ormerod, B.K.3
  • 12
    • 85013737539 scopus 로고    scopus 로고
    • Amsterdam; Burlington, Massachusetts: Elsevier/Academic Press.
    • Carlson BM. 2007. Principles of Regenerative Biology. Amsterdam; Burlington, Massachusetts: Elsevier/Academic Press.
    • (2007) Principles of Regenerative Biology
    • Carlson, B.M.1
  • 13
    • 85013735055 scopus 로고    scopus 로고
    • in: Stocum DL (Ed.)., 2nd Edition. San Diego: Academic Press.
    • Stocum DL. 2012. in: Stocum DL (Ed.). Regenerative Biology and Medicine, 2nd Edition. San Diego: Academic Press.
    • (2012) Regenerative Biology and Medicine
    • Stocum, D.L.1
  • 14
    • 84866175769 scopus 로고    scopus 로고
    • Studying mechanisms of regeneration in amphibian and reptilian vertebrate models
    • Kusumi K, Fisher RE. 2012. Studying mechanisms of regeneration in amphibian and reptilian vertebrate models. Anat Rec (Hoboken) 295: 1529-31.
    • (2012) Anat Rec (Hoboken) , vol.295 , pp. 1529-1531
    • Kusumi, K.1    Fisher, R.E.2
  • 15
    • 79952065525 scopus 로고    scopus 로고
    • Transient regenerative potential of the neonatal mouse heart
    • Porrello ER, Mahmoud AI, Simpson E, Hill JA, et al. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078-80.
    • (2011) Science , vol.331 , pp. 1078-1080
    • Porrello, E.R.1    Mahmoud, A.I.2    Simpson, E.3    Hill, J.A.4
  • 16
    • 39249084246 scopus 로고    scopus 로고
    • Development and regeneration of the neonatal digit tip in mice
    • Han M, Yang X, Lee J, Allan CH, et al. 2008. Development and regeneration of the neonatal digit tip in mice. Dev Biol 315: 125-35.
    • (2008) Dev Biol , vol.315 , pp. 125-135
    • Han, M.1    Yang, X.2    Lee, J.3    Allan, C.H.4
  • 17
    • 84877117939 scopus 로고    scopus 로고
    • Underlying potential: cellular and molecular determinants of adult liver repair
    • Diehl AM, Chute J. 2013. Underlying potential: cellular and molecular determinants of adult liver repair. J Clin Invest 123: 1858-60.
    • (2013) J Clin Invest , vol.123 , pp. 1858-1860
    • Diehl, A.M.1    Chute, J.2
  • 19
    • 84878536232 scopus 로고    scopus 로고
    • Adult zebrafish as a model system for cutaneous wound-healing research
    • Richardson R, Slanchev K, Kraus C, Knyphausen P, et al. 2013. Adult zebrafish as a model system for cutaneous wound-healing research. J Invest Dermatol 133: 1655-65.
    • (2013) J Invest Dermatol , vol.133 , pp. 1655-1665
    • Richardson, R.1    Slanchev, K.2    Kraus, C.3    Knyphausen, P.4
  • 20
    • 84871602280 scopus 로고    scopus 로고
    • Multi-tissue microarray analysis identifies a molecular signature of regeneration
    • Mercer SE, Cheng C-H, Atkinson DL, Krcmery J, et al. 2012. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One 7: e52375.
    • (2012) PLoS One , vol.7
    • Mercer, S.E.1    Cheng, C.-H.2    Atkinson, D.L.3    Krcmery, J.4
  • 21
    • 34249913942 scopus 로고    scopus 로고
    • Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine
    • Stoick-Cooper CL, Moon RT, Weidinger G. 2007. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21: 1292-315.
    • (2007) Genes Dev , vol.21 , pp. 1292-1315
    • Stoick-Cooper, C.L.1    Moon, R.T.2    Weidinger, G.3
  • 22
    • 34447254707 scopus 로고    scopus 로고
    • Positional identity of adult stem cells in salamander limb regeneration
    • Kumar A, Gates PB, Brockes JP. 2007. Positional identity of adult stem cells in salamander limb regeneration. C R Biol 330: 485-90.
    • (2007) C R Biol , vol.330 , pp. 485-490
    • Kumar, A.1    Gates, P.B.2    Brockes, J.P.3
  • 23
    • 84872078327 scopus 로고    scopus 로고
    • Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl
    • Nacu E, Glausch M, Le HQ, Damanik FFR, et al. 2013. Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl. Development 140: 513-8.
    • (2013) Development , vol.140 , pp. 513-518
    • Nacu, E.1    Glausch, M.2    Le, H.Q.3    Damanik, F.F.R.4
  • 24
    • 0036790977 scopus 로고    scopus 로고
    • Diversity, topographic differentiation, and positional memory in human fibroblasts
    • Chang HY, Chi JT, Dudoit S, Bondre C, et al. 2002. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99: 12877-82.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 12877-12882
    • Chang, H.Y.1    Chi, J.T.2    Dudoit, S.3    Bondre, C.4
  • 25
    • 84862860608 scopus 로고    scopus 로고
    • Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches
    • Conboy IM, Rando TA. 2012. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11: 2260-7.
    • (2012) Cell Cycle , vol.11 , pp. 2260-2267
    • Conboy, I.M.1    Rando, T.A.2
  • 26
    • 77954857354 scopus 로고    scopus 로고
    • Potential and pitfalls of stem cell therapy in old age
    • Piccin D, Morshead CM. 2010. Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 3: 421-5.
    • (2010) Dis Model Mech , vol.3 , pp. 421-425
    • Piccin, D.1    Morshead, C.M.2
  • 27
    • 84887984423 scopus 로고    scopus 로고
    • Lin28 enhances tissue repair by reprogramming cellular metabolism
    • Shyh-Chang N, Zhu H, Yvanka de Soysa T, Shinoda G, et al. 2013. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155: 778-92.
    • (2013) Cell , vol.155 , pp. 778-792
    • Shyh-Chang, N.1    Zhu, H.2    Yvanka de Soysa, T.3    Shinoda, G.4
  • 28
    • 84874805183 scopus 로고    scopus 로고
    • Complete cardiac regeneration in a mouse model of myocardial infarction
    • Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, et al. 2012. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4: 966-77.
    • (2012) Aging , vol.4 , pp. 966-977
    • Haubner, B.J.1    Adamowicz-Brice, M.2    Khadayate, S.3    Tiefenthaler, V.4
  • 29
    • 0016326401 scopus 로고
    • Trapped fingers and amputated finger tips in children
    • Illingworth CM. 1974. Trapped fingers and amputated finger tips in children. J Pediatr Surg 9: 853-8.
    • (1974) J Pediatr Surg , vol.9 , pp. 853-858
    • Illingworth, C.M.1
  • 30
    • 0026544176 scopus 로고
    • Fingertip and nailbed injuries
    • Stevenson TR. 1992. Fingertip and nailbed injuries. Orthop Clin North Am 23: 149-59.
    • (1992) Orthop Clin North Am , vol.23 , pp. 149-159
    • Stevenson, T.R.1
  • 31
    • 84866159146 scopus 로고    scopus 로고
    • The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration
    • King MW, Neff AW, Mescher AL. 2012. The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec (Hoboken) 295: 1552-61.
    • (2012) Anat Rec (Hoboken) , vol.295 , pp. 1552-1561
    • King, M.W.1    Neff, A.W.2    Mescher, A.L.3
  • 32
    • 84873344021 scopus 로고    scopus 로고
    • Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis
    • Zeisberg M, Kalluri R. 2013. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 304: C216-25.
    • (2013) Am J Physiol Cell Physiol , vol.304
    • Zeisberg, M.1    Kalluri, R.2
  • 33
    • 84859227684 scopus 로고    scopus 로고
    • Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates
    • Seifert AW, Monaghan JR, Voss SR, Maden M. 2012. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One 7: e32875.
    • (2012) PLoS One , vol.7
    • Seifert, A.W.1    Monaghan, J.R.2    Voss, S.R.3    Maden, M.4
  • 34
    • 84876538366 scopus 로고    scopus 로고
    • Wound healing in mammals and amphibians: toward limb regeneration in mammals
    • Kawasumi A, Sagawa N, Hayashi S, Yokoyama H, et al. 2013. Wound healing in mammals and amphibians: toward limb regeneration in mammals. Curr Top Microbiol Immunol 367: 33-49.
    • (2013) Curr Top Microbiol Immunol , vol.367 , pp. 33-49
    • Kawasumi, A.1    Sagawa, N.2    Hayashi, S.3    Yokoyama, H.4
  • 35
    • 34547526317 scopus 로고    scopus 로고
    • Regenerative healing in fetal skin: a review of the literature
    • quiz 32-3.
    • Wilgus TA. 2007. Regenerative healing in fetal skin: a review of the literature. Ostomy Wound Manage 53: 16-31; quiz 32-3.
    • (2007) Ostomy Wound Manage , vol.53 , pp. 16-31
    • Wilgus, T.A.1
  • 36
    • 0034121872 scopus 로고    scopus 로고
    • Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair
    • discussion 72-3.
    • Liechty KW, Kim HB, Adzick NS, Crombleholme TM. 2000. Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngeneic murine model of scarless fetal wound repair. J Pediatr Surg 35: 866-72; discussion 72-3.
    • (2000) J Pediatr Surg , vol.35 , pp. 866-872
    • Liechty, K.W.1    Kim, H.B.2    Adzick, N.S.3    Crombleholme, T.M.4
  • 37
    • 84869027272 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis
    • Ueha S, Shand FH, Matsushima K. 2012. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front Immunol 3: 71.
    • (2012) Front Immunol , vol.3 , pp. 71
    • Ueha, S.1    Shand, F.H.2    Matsushima, K.3
  • 38
    • 38549159026 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of fibrosis
    • Wynn TA. 2008. Cellular and molecular mechanisms of fibrosis. J Pathol 214: 199-210.
    • (2008) J Pathol , vol.214 , pp. 199-210
    • Wynn, T.A.1
  • 39
    • 84862178131 scopus 로고    scopus 로고
    • Mechanisms of muscle injury, repair, and regeneration
    • Tidball JG. 2011. Mechanisms of muscle injury, repair, and regeneration. Comp Physiol 1: 2029-62.
    • (2011) Comp Physiol , vol.1 , pp. 2029-2062
    • Tidball, J.G.1
  • 40
    • 70350445698 scopus 로고    scopus 로고
    • A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair
    • Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, et al. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 106: 17475-80.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 17475-17480
    • Ruffell, D.1    Mourkioti, F.2    Gambardella, A.3    Kirstetter, P.4
  • 41
    • 77951631929 scopus 로고    scopus 로고
    • Differential roles of macrophages in diverse phases of skin repair
    • Lucas T, Waisman A, Ranjan R, Roes J, et al. 2010. Differential roles of macrophages in diverse phases of skin repair. J Immunol 184: 3964-77.
    • (2010) J Immunol , vol.184 , pp. 3964-3977
    • Lucas, T.1    Waisman, A.2    Ranjan, R.3    Roes, J.4
  • 42
    • 79960997061 scopus 로고    scopus 로고
    • The interplay between macrophages and angiogenesis in development, tissue injury and regeneration
    • Nucera S, Biziato D, De Palma M. 2011. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int J Dev Biol 55: 495-503.
    • (2011) Int J Dev Biol , vol.55 , pp. 495-503
    • Nucera, S.1    Biziato, D.2    De Palma, M.3
  • 43
    • 77749246063 scopus 로고    scopus 로고
    • Macrophage Wnt7b is critical for kidney repair and regeneration
    • Lin SL, Li B, Rao S, Yeo EJ, et al. 2010. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci USA 107: 4194-9.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 4194-4199
    • Lin, S.L.1    Li, B.2    Rao, S.3    Yeo, E.J.4
  • 44
    • 33745712928 scopus 로고    scopus 로고
    • Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells
    • Yin Y, Henzl MT, Lorber B, Nakazawa T, et al. 2006. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9: 843-52.
    • (2006) Nat Neurosci , vol.9 , pp. 843-852
    • Yin, Y.1    Henzl, M.T.2    Lorber, B.3    Nakazawa, T.4
  • 45
    • 84859614232 scopus 로고    scopus 로고
    • Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease
    • Boulter L, Govaere O, Bird TG, Radulescu S, et al. 2012. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 18: 572-9.
    • (2012) Nat Med , vol.18 , pp. 572-579
    • Boulter, L.1    Govaere, O.2    Bird, T.G.3    Radulescu, S.4
  • 46
    • 34447645515 scopus 로고    scopus 로고
    • Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter
    • Rae F, Woods K, Sasmono T, Campanale N, et al. 2007. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 308: 232-46.
    • (2007) Dev Biol , vol.308 , pp. 232-246
    • Rae, F.1    Woods, K.2    Sasmono, T.3    Campanale, N.4
  • 47
    • 84878419732 scopus 로고    scopus 로고
    • Macrophage phenotypes during tissue repair
    • Novak ML, Koh TJ. 2013. Macrophage phenotypes during tissue repair. J Leukoc Biol 93: 875-81.
    • (2013) J Leukoc Biol , vol.93 , pp. 875-881
    • Novak, M.L.1    Koh, T.J.2
  • 48
    • 84878699191 scopus 로고    scopus 로고
    • Macrophages are required for adult salamander limb regeneration
    • Godwin JW, Pinto AR, Rosenthal NA. 2013. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 110: 9415-20.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 9415-9420
    • Godwin, J.W.1    Pinto, A.R.2    Rosenthal, N.A.3
  • 49
    • 84864093370 scopus 로고    scopus 로고
    • Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration
    • Li L, Yan B, Shi Y-Q, Zhang W-Q, et al. 2012. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J Biol Chem 287: 25353-60.
    • (2012) J Biol Chem , vol.287 , pp. 25353-25360
    • Li, L.1    Yan, B.2    Shi, Y.-Q.3    Zhang, W.-Q.4
  • 50
    • 33749167567 scopus 로고    scopus 로고
    • Regeneration, tissue injury and the immune response
    • Godwin JW, Brockes JP. 2006. Regeneration, tissue injury and the immune response. J Anat 209: 423-32.
    • (2006) J Anat , vol.209 , pp. 423-432
    • Godwin, J.W.1    Brockes, J.P.2
  • 51
    • 33749237080 scopus 로고    scopus 로고
    • Limb regeneration in amphibians: immunological considerations
    • Mescher AL, Neff AW. 2006. Limb regeneration in amphibians: immunological considerations. ScientificWorldJournal 6: 1-11.
    • (2006) ScientificWorldJournal , vol.6 , pp. 1-11
    • Mescher, A.L.1    Neff, A.W.2
  • 52
    • 84888286862 scopus 로고    scopus 로고
    • D-type Cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells
    • Zhang Q, Sakamoto K, Wagner KU. 2014. D-type Cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells. Mol Cell Endocrinol 382: 583-92.
    • (2014) Mol Cell Endocrinol , vol.382 , pp. 583-592
    • Zhang, Q.1    Sakamoto, K.2    Wagner, K.U.3
  • 53
    • 84894342775 scopus 로고    scopus 로고
    • Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs
    • Mescher AL, Neff AW, King MW. 2013. Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One 8: e80477.
    • (2013) PLoS One , vol.8
    • Mescher, A.L.1    Neff, A.W.2    King, M.W.3
  • 54
    • 0037308725 scopus 로고    scopus 로고
    • Regeneration or scarring: an immunologic perspective
    • Harty M, Neff AW, King MW, Mescher AL. 2003. Regeneration or scarring: an immunologic perspective. Dev Dyn 226: 268-79.
    • (2003) Dev Dyn , vol.226 , pp. 268-279
    • Harty, M.1    Neff, A.W.2    King, M.W.3    Mescher, A.L.4
  • 55
    • 83455218183 scopus 로고    scopus 로고
    • Natural killer cells preferentially target cancer stem cells; role of monocytes in protection against NK cell mediated lysis of cancer stem cells
    • Jewett A, Tseng HC, Arasteh A, Saadat S, et al. 2012. Natural killer cells preferentially target cancer stem cells; role of monocytes in protection against NK cell mediated lysis of cancer stem cells. Curr Drug Deliv 9: 5-16.
    • (2012) Curr Drug Deliv , vol.9 , pp. 5-16
    • Jewett, A.1    Tseng, H.C.2    Arasteh, A.3    Saadat, S.4
  • 56
    • 84867918317 scopus 로고    scopus 로고
    • Nerve dependence in tissue, organ, and appendage regeneration
    • Kumar A, Brockes JP. 2012. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35: 691-9.
    • (2012) Trends Neurosci , vol.35 , pp. 691-699
    • Kumar, A.1    Brockes, J.P.2
  • 57
    • 80053025002 scopus 로고    scopus 로고
    • The role of peripheral nerves in urodele limb regeneration
    • Stocum DL. 2011. The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci 34: 908-16.
    • (2011) Eur J Neurosci , vol.34 , pp. 908-916
    • Stocum, D.L.1
  • 58
    • 67651184166 scopus 로고    scopus 로고
    • The role of nerve signaling in limb genesis and agenesis during axolotl limb regeneration
    • Satoh A, James MA, Gardiner DM. 2009. The role of nerve signaling in limb genesis and agenesis during axolotl limb regeneration. J Bone Joint Surg Am 91: 90-8.
    • (2009) J Bone Joint Surg Am , vol.91 , pp. 90-98
    • Satoh, A.1    James, M.A.2    Gardiner, D.M.3
  • 59
    • 38349023585 scopus 로고    scopus 로고
    • Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate
    • Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, et al. 2007. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318: 772-7.
    • (2007) Science , vol.318 , pp. 772-777
    • Kumar, A.1    Godwin, J.W.2    Gates, P.B.3    Garza-Garcia, A.A.4
  • 60
    • 84874299314 scopus 로고    scopus 로고
    • Agr genes, missing in amniotes, are involved in the body appendages regeneration in frog tadpoles
    • Ivanova AS, Tereshina MB, Ermakova GV, Belousov VV, et al. 2013. Agr genes, missing in amniotes, are involved in the body appendages regeneration in frog tadpoles. Sci Rep 3: 1279.
    • (2013) Sci Rep , vol.3 , pp. 1279
    • Ivanova, A.S.1    Tereshina, M.B.2    Ermakova, G.V.3    Belousov, V.V.4
  • 61
    • 84859706104 scopus 로고    scopus 로고
    • Zebrafish Agr2 is required for terminal differentiation of intestinal goblet cells
    • Chen YC, Lu YF, Li IC, Hwang SP. 2012. Zebrafish Agr2 is required for terminal differentiation of intestinal goblet cells. PLoS One 7: e34408.
    • (2012) PLoS One , vol.7
    • Chen, Y.C.1    Lu, Y.F.2    Li, I.C.3    Hwang, S.P.4
  • 62
    • 84873668892 scopus 로고    scopus 로고
    • Loss of anterior gradient 2 (Agr2) expression results in hyperplasia and defective lineage maturation in the murine stomach
    • Gupta A, Wodziak D, Tun M, Bouley DM, et al. 2013. Loss of anterior gradient 2 (Agr2) expression results in hyperplasia and defective lineage maturation in the murine stomach. J Biol Chem 288: 4321-33.
    • (2013) J Biol Chem , vol.288 , pp. 4321-4333
    • Gupta, A.1    Wodziak, D.2    Tun, M.3    Bouley, D.M.4
  • 63
    • 84863324107 scopus 로고    scopus 로고
    • Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2
    • Li S, Wang Y, Zhang Y, Lu MM, et al. 2012. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development 139: 2500-9.
    • (2012) Development , vol.139 , pp. 2500-2509
    • Li, S.1    Wang, Y.2    Zhang, Y.3    Lu, M.M.4
  • 64
    • 84878015882 scopus 로고    scopus 로고
    • Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development
    • Chevet E, Fessart D, Delom F, Mulot A, et al. 2013. Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene 32: 2499-509.
    • (2013) Oncogene , vol.32 , pp. 2499-2509
    • Chevet, E.1    Fessart, D.2    Delom, F.3    Mulot, A.4
  • 65
    • 84881553372 scopus 로고    scopus 로고
    • Nerve independent limb induction in axolotls
    • Makanae A, Hirata A, Honjo Y, Mitogawa K, et al. 2013. Nerve independent limb induction in axolotls. Dev Biol 381: 213-26.
    • (2013) Dev Biol , vol.381 , pp. 213-226
    • Makanae, A.1    Hirata, A.2    Honjo, Y.3    Mitogawa, K.4
  • 66
    • 0034651994 scopus 로고    scopus 로고
    • Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema
    • Kumar A, Velloso CP, Imokawa Y, Brockes JP. 2000. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol 218: 125-36.
    • (2000) Dev Biol , vol.218 , pp. 125-136
    • Kumar, A.1    Velloso, C.P.2    Imokawa, Y.3    Brockes, J.P.4
  • 67
    • 0032770387 scopus 로고    scopus 로고
    • Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt
    • Ito M, Hayashi T, Kuroiwa A, Okamoto M. 1999. Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Dev Growth Differ 41: 429-40.
    • (1999) Dev Growth Differ , vol.41 , pp. 429-440
    • Ito, M.1    Hayashi, T.2    Kuroiwa, A.3    Okamoto, M.4
  • 68
    • 33845708407 scopus 로고    scopus 로고
    • Re-programming of newt cardiomyocytes is induced by tissue regeneration
    • Laube F, Heister M, Scholz C, Borchardt T, et al. 2006. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119: 4719-29.
    • (2006) J Cell Sci , vol.119 , pp. 4719-4729
    • Laube, F.1    Heister, M.2    Scholz, C.3    Borchardt, T.4
  • 69
    • 0035923683 scopus 로고    scopus 로고
    • Mammalian myotube dedifferentiation induced by newt regeneration extract
    • McGann CJ, Odelberg SJ, Keating MT. 2001. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci USA 98: 13699-704.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 13699-13704
    • McGann, C.J.1    Odelberg, S.J.2    Keating, M.T.3
  • 70
    • 54549096968 scopus 로고    scopus 로고
    • Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus
    • Kim H-J, Archer E, Escobedo N, Tapscott SJ, et al. 2008. Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Dev Dyn 237: 2830-43.
    • (2008) Dev Dyn , vol.237 , pp. 2830-2843
    • Kim, H.-J.1    Archer, E.2    Escobedo, N.3    Tapscott, S.J.4
  • 71
    • 0033615062 scopus 로고    scopus 로고
    • Thrombin regulates S-phase re-entry by cultured newt myotubes
    • Tanaka EM, Drechsel DN, Brockes JP. 1999. Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr Biol 9: 792-9.
    • (1999) Curr Biol , vol.9 , pp. 792-799
    • Tanaka, E.M.1    Drechsel, D.N.2    Brockes, J.P.3
  • 72
    • 34248174788 scopus 로고    scopus 로고
    • Plasticity of mammalian myotubes upon stimulation with a thrombin-activated serum factor
    • Lööf S, Straube WL, Drechsel D, Tanaka EM, et al. 2007. Plasticity of mammalian myotubes upon stimulation with a thrombin-activated serum factor. Cell Cycle 6: 1096-101.
    • (2007) Cell Cycle , vol.6 , pp. 1096-1101
    • Lööf, S.1    Straube, W.L.2    Drechsel, D.3    Tanaka, E.M.4
  • 73
    • 77956247987 scopus 로고    scopus 로고
    • Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle
    • Pajcini KV, Corbel SY, Sage J, Pomerantz JH, et al. 2010. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7: 198-213.
    • (2010) Cell Stem Cell , vol.7 , pp. 198-213
    • Pajcini, K.V.1    Corbel, S.Y.2    Sage, J.3    Pomerantz, J.H.4
  • 74
    • 34548153747 scopus 로고    scopus 로고
    • How stem cells age and why this makes us grow old
    • Sharpless NE, DePinho RA. 2007. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8: 703-13.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 703-713
    • Sharpless, N.E.1    DePinho, R.A.2
  • 75
    • 84876007237 scopus 로고    scopus 로고
    • Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema
    • Stewart R, Rascón CA, Tian S, Nie J, et al. 2013. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 9: e1002936.
    • (2013) PLoS Comput Biol , vol.9
    • Stewart, R.1    Rascón, C.A.2    Tian, S.3    Nie, J.4
  • 76
    • 84964866468 scopus 로고    scopus 로고
    • Gene expression patterns specific to the regenerating limb of the Mexican axolotl
    • Monaghan JR, Athippozhy A, Seifert AW, Putta S, et al. 2012. Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biol Open 1: 937-48.
    • (2012) Biol Open , vol.1 , pp. 937-948
    • Monaghan, J.R.1    Athippozhy, A.2    Seifert, A.W.3    Putta, S.4
  • 77
    • 79958774902 scopus 로고    scopus 로고
    • Gene expression profile of the regeneration epithelium during axolotl limb regeneration
    • Campbell LJ, Suárez-Castillo EC, Ortiz-Zuazaga H, Knapp D, et al. 2011. Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Dev Dyn 240: 1826-40.
    • (2011) Dev Dyn , vol.240 , pp. 1826-1840
    • Campbell, L.J.1    Suárez-Castillo, E.C.2    Ortiz-Zuazaga, H.3    Knapp, D.4
  • 78
    • 84877071493 scopus 로고    scopus 로고
    • Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program
    • Knapp D, Schulz H, Rascón CA, Volkmer M, et al. 2013. Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 8: e61352.
    • (2013) PLoS One , vol.8
    • Knapp, D.1    Schulz, H.2    Rascón, C.A.3    Volkmer, M.4
  • 79
    • 79959746876 scopus 로고    scopus 로고
    • Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells
    • Ciemerych MA, Archacka K, Grabowska I, Przewozniak M. 2011. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 53: 473-527.
    • (2011) Results Probl Cell Differ , vol.53 , pp. 473-527
    • Ciemerych, M.A.1    Archacka, K.2    Grabowska, I.3    Przewozniak, M.4
  • 80
    • 16444379514 scopus 로고    scopus 로고
    • Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis
    • Jin ZH, Kurosu T, Yamaguchi M, Arai A, et al. 2005. Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis. Oncogene 24: 1973-81.
    • (2005) Oncogene , vol.24 , pp. 1973-1981
    • Jin, Z.H.1    Kurosu, T.2    Yamaguchi, M.3    Arai, A.4
  • 81
    • 0033571182 scopus 로고    scopus 로고
    • A proinflammatory cytokine inhibits p53 tumor suppressor activity
    • Hudson JD, Shoaibi MA, Maestro R, Carnero A, et al. 1999. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190: 1375-82.
    • (1999) J Exp Med , vol.190 , pp. 1375-1382
    • Hudson, J.D.1    Shoaibi, M.A.2    Maestro, R.3    Carnero, A.4
  • 82
    • 84878326006 scopus 로고    scopus 로고
    • Tumor suppressors: enhancers or suppressors of regeneration
    • Pomerantz JH, Blau HM. 2013. Tumor suppressors: enhancers or suppressors of regeneration? Development 140: 2502-12.
    • (2013) Development , vol.140 , pp. 2502-2512
    • Pomerantz, J.H.1    Blau, H.M.2
  • 83
    • 36549051746 scopus 로고    scopus 로고
    • Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians
    • Yakushiji N, Suzuki M, Satoh A, Sagai T, et al. 2007. Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol 312: 171-82.
    • (2007) Dev Biol , vol.312 , pp. 171-182
    • Yakushiji, N.1    Suzuki, M.2    Satoh, A.3    Sagai, T.4
  • 84
    • 70249141961 scopus 로고    scopus 로고
    • Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration
    • Anderson RM, Bosch JA, Goll MG, Hesselson D, et al. 2009. Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 334: 213-23.
    • (2009) Dev Biol , vol.334 , pp. 213-223
    • Anderson, R.M.1    Bosch, J.A.2    Goll, M.G.3    Hesselson, D.4
  • 85
    • 84867896794 scopus 로고    scopus 로고
    • Histone deacetylases are required for amphibian tail and limb regeneration but not development
    • Taylor AJ, Beck CW. 2012. Histone deacetylases are required for amphibian tail and limb regeneration but not development. Mech Dev 129: 208-18.
    • (2012) Mech Dev , vol.129 , pp. 208-218
    • Taylor, A.J.1    Beck, C.W.2
  • 86
    • 84889785400 scopus 로고    scopus 로고
    • Epigenetic regulation of sensory axon regeneration after spinal cord injury
    • Finelli MJ, Wong JK, Zou H. 2013. Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci 33: 19664-76.
    • (2013) J Neurosci , vol.33 , pp. 19664-19676
    • Finelli, M.J.1    Wong, J.K.2    Zou, H.3
  • 87
    • 84862777974 scopus 로고    scopus 로고
    • Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis
    • Delgado-Olguin P, Huang Y, Li X, Christodoulou D, et al. 2012. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 44: 343-7.
    • (2012) Nat Genet , vol.44 , pp. 343-347
    • Delgado-Olguin, P.1    Huang, Y.2    Li, X.3    Christodoulou, D.4
  • 88
    • 77956627446 scopus 로고    scopus 로고
    • Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo
    • Maki N, Suetsugu-Maki R, Sano S, Nakamura K, et al. 2010. Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo. FASEB J 24: 3462-7.
    • (2010) FASEB J , vol.24 , pp. 3462-3467
    • Maki, N.1    Suetsugu-Maki, R.2    Sano, S.3    Nakamura, K.4
  • 90
    • 84876714423 scopus 로고    scopus 로고
    • Technological overview of iPS induction from human adult somatic cells
    • Bayart E, Cohen-Haguenauer O. 2013. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther 13: 73-92.
    • (2013) Curr Gene Ther , vol.13 , pp. 73-92
    • Bayart, E.1    Cohen-Haguenauer, O.2
  • 91
    • 84879688282 scopus 로고    scopus 로고
    • In vivo cardiac reprogramming contributes to zebrafish heart regeneration
    • Zhang R, Han P, Yang H, Ouyang K, et al. 2013. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498: 497-501.
    • (2013) Nature , vol.498 , pp. 497-501
    • Zhang, R.1    Han, P.2    Yang, H.3    Ouyang, K.4
  • 92
    • 84868200629 scopus 로고    scopus 로고
    • Regeneration and reprogramming
    • Knapp D, Tanaka EM. 2012. Regeneration and reprogramming. Curr Opin Genet Dev 22: 485-93.
    • (2012) Curr Opin Genet Dev , vol.22 , pp. 485-493
    • Knapp, D.1    Tanaka, E.M.2
  • 94
    • 84876181417 scopus 로고    scopus 로고
    • Transcriptome analysis of newt lens regeneration reveals distinct gradients in gene expression patterns
    • Sousounis K, Looso M, Maki N, Ivester CJ, et al. 2013. Transcriptome analysis of newt lens regeneration reveals distinct gradients in gene expression patterns. PLoS One 8: e61445.
    • (2013) PLoS One , vol.8
    • Sousounis, K.1    Looso, M.2    Maki, N.3    Ivester, C.J.4
  • 95
    • 84873175090 scopus 로고    scopus 로고
    • A microarray analysis of gene expression patterns during early phases of newt lens regeneration
    • Sousounis K, Michel CS, Bruckskotten M, Maki N, et al. 2013. A microarray analysis of gene expression patterns during early phases of newt lens regeneration. Mol Vis 19: 135-45.
    • (2013) Mol Vis , vol.19 , pp. 135-145
    • Sousounis, K.1    Michel, C.S.2    Bruckskotten, M.3    Maki, N.4
  • 96
    • 66349099011 scopus 로고    scopus 로고
    • Expression of stem cell pluripotency factors during regeneration in newts
    • Maki N, Suetsugu-Maki R, Tarui H, Agata K, et al. 2009. Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238: 1613-6.
    • (2009) Dev Dyn , vol.238 , pp. 1613-1616
    • Maki, N.1    Suetsugu-Maki, R.2    Tarui, H.3    Agata, K.4
  • 97
    • 77950344768 scopus 로고    scopus 로고
    • Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells
    • Qiu C, Ma Y, Wang J, Peng S, et al. 2010. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res 38: 1240-8.
    • (2010) Nucleic Acids Res , vol.38 , pp. 1240-1248
    • Qiu, C.1    Ma, Y.2    Wang, J.3    Peng, S.4
  • 98
    • 72549089941 scopus 로고    scopus 로고
    • Proteomic analysis of blastema formation in regenerating axolotl limbs
    • Rao N, Jhamb D, Milner DJ, Li B, et al. 2009. Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 7: 83.
    • (2009) BMC Biol , vol.7 , pp. 83
    • Rao, N.1    Jhamb, D.2    Milner, D.J.3    Li, B.4
  • 99
    • 79955003018 scopus 로고    scopus 로고
    • Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration
    • Neff AW, King MW, Mescher AL. 2011. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev Dyn 240: 979-89.
    • (2011) Dev Dyn , vol.240 , pp. 979-989
    • Neff, A.W.1    King, M.W.2    Mescher, A.L.3
  • 100
    • 67650073154 scopus 로고    scopus 로고
    • Cells keep a memory of their tissue origin during axolotl limb regeneration
    • Kragl M, Knapp D, Nacu E, Khattak S, et al. 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460: 60-5.
    • (2009) Nature , vol.460 , pp. 60-65
    • Kragl, M.1    Knapp, D.2    Nacu, E.3    Khattak, S.4
  • 101
    • 84873948069 scopus 로고    scopus 로고
    • A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration
    • Looso M, Preussner J, Sousounis K, Bruckskotten M, et al. 2013. A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration. Genome Biol 14: R16.
    • (2013) Genome Biol , vol.14
    • Looso, M.1    Preussner, J.2    Sousounis, K.3    Bruckskotten, M.4
  • 102
    • 84866137157 scopus 로고    scopus 로고
    • Spiked-in pulsed in vivo labeling identifies a new member of the CCN family in regenerating newt hearts
    • Looso M, Michel CS, Konzer A, Bruckskotten M, et al. 2012. Spiked-in pulsed in vivo labeling identifies a new member of the CCN family in regenerating newt hearts. J Proteome Res 11: 4693-704.
    • (2012) J Proteome Res , vol.11 , pp. 4693-4704
    • Looso, M.1    Michel, C.S.2    Konzer, A.3    Bruckskotten, M.4
  • 103
    • 84876083730 scopus 로고    scopus 로고
    • A reference transcriptome and inferred proteome for the salamander Notophthalmus viridescens
    • Abdullayev I, Kirkham M, Björklund ÅK, Simon A, et al. 2013. A reference transcriptome and inferred proteome for the salamander Notophthalmus viridescens. Exp Cell Res 19: 1187-97.
    • (2013) Exp Cell Res , vol.19 , pp. 1187-1197
    • Abdullayev, I.1    Kirkham, M.2    Björklund, A.3    Simon, A.4
  • 104
    • 77957812580 scopus 로고    scopus 로고
    • Evolutionary loss of animal regeneration: pattern and process
    • Bely AE. 2010. Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol 50: 515-27.
    • (2010) Integr Comp Biol , vol.50 , pp. 515-527
    • Bely, A.E.1
  • 105
    • 76249112565 scopus 로고    scopus 로고
    • Evolution of animal regeneration: re-emergence of a field
    • Bely AE, Nyberg KG. 2010. Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol (Amst) 25: 161-70.
    • (2010) Trends Ecol Evol (Amst) , vol.25 , pp. 161-170
    • Bely, A.E.1    Nyberg, K.G.2
  • 106
    • 77956875260 scopus 로고    scopus 로고
    • Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders
    • Garza-Garcia AA, Driscoll PC, Brockes JP. 2010. Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50: 528-35.
    • (2010) Integr Comp Biol , vol.50 , pp. 528-535
    • Garza-Garcia, A.A.1    Driscoll, P.C.2    Brockes, J.P.3
  • 107
    • 0036773932 scopus 로고    scopus 로고
    • The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration
    • da Silva SM, Gates PB, Brockes JP. 2002. The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3: 547-55.
    • (2002) Dev Cell , vol.3 , pp. 547-555
    • da Silva, S.M.1    Gates, P.B.2    Brockes, J.P.3
  • 108
    • 14544274174 scopus 로고    scopus 로고
    • Proximodistal patterning during limb regeneration
    • Echeverri K, Tanaka EM. 2005. Proximodistal patterning during limb regeneration. Dev Biol 279: 391-401.
    • (2005) Dev Biol , vol.279 , pp. 391-401
    • Echeverri, K.1    Tanaka, E.M.2
  • 109
    • 78651075307 scopus 로고    scopus 로고
    • Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration
    • Blassberg RA, Garza-Garcia A, Janmohamed A, Gates PB, et al. 2010. Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J Cell Sci 124: 47-56.
    • (2010) J Cell Sci , vol.124 , pp. 47-56
    • Blassberg, R.A.1    Garza-Garcia, A.2    Janmohamed, A.3    Gates, P.B.4
  • 110
    • 79151475358 scopus 로고    scopus 로고
    • AmbLOXe - an epidermal lipoxygenase of the Mexican axolotl in the context of amphibian regeneration and its impact on human wound closure in vitro
    • Menger B, Vogt PM, Allmeling C, Radtke C, et al. 2011. AmbLOXe - an epidermal lipoxygenase of the Mexican axolotl in the context of amphibian regeneration and its impact on human wound closure in vitro. Ann Surg 253: 410-8.
    • (2011) Ann Surg , vol.253 , pp. 410-418
    • Menger, B.1    Vogt, P.M.2    Allmeling, C.3    Radtke, C.4
  • 111
    • 84881395019 scopus 로고    scopus 로고
    • Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl
    • Khattak S, Schuez M, Richter T, Knapp D, et al. 2013. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Rep 1: 90-103.
    • (2013) Stem Cell Rep , vol.1 , pp. 90-103
    • Khattak, S.1    Schuez, M.2    Richter, T.3    Knapp, D.4
  • 112
    • 84858202573 scopus 로고    scopus 로고
    • PhOTO Zebrafish: a transgenic resource for in vivo lineage tracing during development and regeneration
    • Dempsey WP, Fraser SE, Pantazis P. 2012. PhOTO Zebrafish: a transgenic resource for in vivo lineage tracing during development and regeneration. PLoS One 7: e32888.
    • (2012) PLoS One , vol.7
    • Dempsey, W.P.1    Fraser, S.E.2    Pantazis, P.3
  • 113
    • 84873704052 scopus 로고    scopus 로고
    • Pseudotyped retroviruses for infecting axolotl in vivo and in vitro
    • Whited JL, Tsai SL, Beier KT, White JN, et al. 2013. Pseudotyped retroviruses for infecting axolotl in vivo and in vitro. Development 140: 1137-46.
    • (2013) Development , vol.140 , pp. 1137-1146
    • Whited, J.L.1    Tsai, S.L.2    Beier, K.T.3    White, J.N.4
  • 115
    • 77950200829 scopus 로고    scopus 로고
    • Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
    • Jopling C, Sleep E, Raya M, Marti M, et al. 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606-9.
    • (2010) Nature , vol.464 , pp. 606-609
    • Jopling, C.1    Sleep, E.2    Raya, M.3    Marti, M.4
  • 116
    • 79959427955 scopus 로고    scopus 로고
    • tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
    • Kikuchi K, Gupta V, Wang J, Holdway JE, et al. 2011. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138: 2895-902.
    • (2011) Development , vol.138 , pp. 2895-2902
    • Kikuchi, K.1    Gupta, V.2    Wang, J.3    Holdway, J.E.4
  • 117
    • 84859845794 scopus 로고    scopus 로고
    • Regeneration of amputated zebrafish fin rays from de novo osteoblasts
    • Singh SP, Holdway JE, Poss KD. 2012. Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22: 879-86.
    • (2012) Dev Cell , vol.22 , pp. 879-886
    • Singh, S.P.1    Holdway, J.E.2    Poss, K.D.3
  • 118
    • 77950201708 scopus 로고    scopus 로고
    • Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes
    • Kikuchi K, Holdway JE, Werdich AA, Anderson RM, et al. 2010. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464: 601-5.
    • (2010) Nature , vol.464 , pp. 601-605
    • Kikuchi, K.1    Holdway, J.E.2    Werdich, A.A.3    Anderson, R.M.4
  • 119
    • 77952304105 scopus 로고    scopus 로고
    • Plasticity and recovery of skeletal muscle satellite cells during limb regeneration
    • Morrison JI, Borg P, Simon A. 2010. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J 24: 750-6.
    • (2010) FASEB J , vol.24 , pp. 750-756
    • Morrison, J.I.1    Borg, P.2    Simon, A.3
  • 120
    • 84893763187 scopus 로고    scopus 로고
    • Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species
    • Sandoval-Guzman T, Wang H, Khattak S, Schuez M, et al. 2014. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14: 174-87.
    • (2014) Cell Stem Cell , vol.14 , pp. 174-187
    • Sandoval-Guzman, T.1    Wang, H.2    Khattak, S.3    Schuez, M.4
  • 121
    • 84872597351 scopus 로고    scopus 로고
    • Negative regulators of schwann cell differentiation-novel targets for peripheral nerve therapies
    • Heinen A, Lehmann HC, Kury P. 2013. Negative regulators of schwann cell differentiation-novel targets for peripheral nerve therapies? J Clin Immunol 33: S18-26.
    • (2013) J Clin Immunol , vol.33
    • Heinen, A.1    Lehmann, H.C.2    Kury, P.3
  • 122
    • 84866147372 scopus 로고    scopus 로고
    • Distinct contribution of stem and progenitor cells to epidermal maintenance
    • Mascré G, Dekoninck S, Drogat B, Youssef KK, et al. 2012. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489: 257-62.
    • (2012) Nature , vol.489 , pp. 257-262
    • Mascré, G.1    Dekoninck, S.2    Drogat, B.3    Youssef, K.K.4
  • 123
    • 84876317931 scopus 로고    scopus 로고
    • Cycling progenitors maintain epithelia while diverse cell types contribute to repair
    • Doupe DP, Jones PH. 2013. Cycling progenitors maintain epithelia while diverse cell types contribute to repair. BioEssays 35: 443-51.
    • (2013) BioEssays , vol.35 , pp. 443-451
    • Doupe, D.P.1    Jones, P.H.2
  • 124
    • 80054041585 scopus 로고    scopus 로고
    • A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
    • Tian H, Biehs B, Warming S, Leong KG, et al. 2011. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478: 255-9.
    • (2011) Nature , vol.478 , pp. 255-259
    • Tian, H.1    Biehs, B.2    Warming, S.3    Leong, K.G.4
  • 125
    • 84867097416 scopus 로고    scopus 로고
    • Dll1+ secretory progenitor cells revert to stem cells upon crypt damage
    • van Es JH, Sato T, van de Wetering M, Lyubimova A, et al. 2012. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14: 1099-104.
    • (2012) Nat Cell Biol , vol.14 , pp. 1099-1104
    • van Es, J.H.1    Sato, T.2    van de Wetering, M.3    Lyubimova, A.4
  • 127
    • 84855507663 scopus 로고    scopus 로고
    • Mouse digit tip regeneration is mediated by fate-restricted progenitor cells
    • Lehoczky JA, Robert B, Tabin CJ. 2011. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc Natl Acad Sci USA 108: 20609-14.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 20609-20614
    • Lehoczky, J.A.1    Robert, B.2    Tabin, C.J.3
  • 128
    • 84880506919 scopus 로고    scopus 로고
    • Wnt activation in nail epithelium couples nail growth to digit regeneration
    • Takeo M, Chou WC, Sun Q, Lee W, et al. 2013. Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499: 228-32.
    • (2013) Nature , vol.499 , pp. 228-232
    • Takeo, M.1    Chou, W.C.2    Sun, Q.3    Lee, W.4
  • 129
    • 33845423849 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling regulates vertebrate limb regeneration
    • Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, et al. 2006. Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20: 3232-7.
    • (2006) Genes Dev , vol.20 , pp. 3232-3237
    • Kawakami, Y.1    Rodriguez Esteban, C.2    Raya, M.3    Kawakami, H.4
  • 130
    • 79960812592 scopus 로고    scopus 로고
    • Different requirement for Wnt/β-catenin signaling in limb regeneration of larval and adult Xenopus
    • Yokoyama H, Maruoka T, Ochi H, Aruga A, et al. 2011. Different requirement for Wnt/β-catenin signaling in limb regeneration of larval and adult Xenopus. PLoS One 6: e21721.
    • (2011) PLoS One , vol.6
    • Yokoyama, H.1    Maruoka, T.2    Ochi, H.3    Aruga, A.4
  • 131
    • 84872416446 scopus 로고    scopus 로고
    • Imparting regenerative capacity to limbs by progenitor cell transplantation
    • Lin G, Chen Y, Slack JM. 2013. Imparting regenerative capacity to limbs by progenitor cell transplantation. Dev Cell 24: 41-51.
    • (2013) Dev Cell , vol.24 , pp. 41-51
    • Lin, G.1    Chen, Y.2    Slack, J.M.3
  • 132
    • 77955376568 scopus 로고    scopus 로고
    • Increased lysis of stem cells but not their differentiated cells by natural killer cells; de-differentiation or reprogramming activates NK cells
    • Tseng HC, Arasteh A, Paranjpe A, Teruel A, et al. 2010. Increased lysis of stem cells but not their differentiated cells by natural killer cells; de-differentiation or reprogramming activates NK cells. PLoS One 5: e11590.
    • (2010) PLoS One , vol.5
    • Tseng, H.C.1    Arasteh, A.2    Paranjpe, A.3    Teruel, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.