메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 1936-1946

A data-driven stochastic approach for unmixing hyperspectral imagery

Author keywords

Abundance estimation; Huber function; hyperspectral imaging; Markov random field (MRF); spectral unmixing

Indexed keywords

BAYESIAN NETWORKS; MARKOV PROCESSES; PARTICLE SWARM OPTIMIZATION (PSO); PROBABILITY DISTRIBUTIONS; SIGNAL TO NOISE RATIO; STOCHASTIC SYSTEMS;

EID: 84905898474     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2328597     Document Type: Article
Times cited : (28)

References (49)
  • 1
    • 0021892045 scopus 로고
    • Imaging spectrometry for earth remote sensing
    • A. F. H. Goetz et al., "Imaging spectrometry for earth remote sensing," Science, vol. 228, no. 4704, pp. 1147-1153, 1985.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Goetz, A.F.H.1
  • 2
    • 85076743622 scopus 로고
    • Analysis, understanding and visualization of hyperspectral data as convex sets in n-space
    • J. Boardman, "Analysis, understanding and visualization of hyperspectral data as convex sets in n-space," in Proc. SPIE, vol. 2480, pp. 23-36, 1995.
    • (1995) Proc. SPIE , vol.2480 , pp. 23-36
    • Boardman, J.1
  • 3
    • 0031384963 scopus 로고    scopus 로고
    • Application of stochastic mixing models to hyperspectral detection problems
    • A. D. Stocker and A. P. Schaum, "Application of stochastic mixing models to hyperspectral detection problems," in Proc. SPIE, vol. 3071, pp. 47-60, 1997.
    • (1997) Proc. SPIE , vol.3071 , pp. 47-60
    • Stocker, A.D.1    Schaum, A.P.2
  • 4
    • 1942519714 scopus 로고    scopus 로고
    • Initialization and convergence of the stochastic mixing model
    • M. T. Eismann and R. C. Hardie, "Initialization and convergence of the stochastic mixing model," in Proc. SPIE, vol. 5159, pp. 307-318, 2003.
    • (2003) Proc. SPIE , vol.5159 , pp. 307-318
    • Eismann, M.T.1    Hardie, R.C.2
  • 5
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr.
    • J. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.1
  • 6
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113 (Suppl. 1), pp. S110-S122, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.SUPPL. 1
    • Plaza, A.1
  • 8
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 9
    • 84905922503 scopus 로고    scopus 로고
    • [Online] Available:
    • [Online] Available: http://speclab.cr.usgs.gov/spectral.lib06/splib06a
  • 10
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE, vol. 3753, pp. 266-277, 1999.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 11
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 12
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002. (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 13
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • Apr.
    • G. Martin and A. Plaza, "Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 380-395, Apr. 2012.
    • (2012) J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 16
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J., vol. 14, no. 1, pp. 55-78, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 17
    • 0027591549 scopus 로고
    • SEM algorithm and unsupervised statistical segmentation of satellite images
    • DOI 10.1109/36.225529
    • P. Masson and W. Pieczynski, "SEM algorithm and unsupervised statistical segmentation of satellite images," IEEE Trans. Geosci. Remote Sens., vol. 31, no. 3, pp. 618-633, May 1993. (Pubitemid 23697387)
    • (1993) IEEE Transactions on Geoscience and Remote Sensing , vol.31 , Issue.3 , pp. 618-633
    • Masson Pascale1    Pieczynski Wojciech2
  • 18
    • 77954624705 scopus 로고    scopus 로고
    • Mixture analysis by multichannel Hopfield neural network
    • Jul.
    • S. Mei, M. He, Z. Wang, and D. Feng, "Mixture analysis by multichannel Hopfield neural network," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 455-459, Jul. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.3 , pp. 455-459
    • Mei, S.1    He, M.2    Wang, Z.3    Feng, D.4
  • 19
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 20
    • 12344323601 scopus 로고    scopus 로고
    • Stochastic spectral unmixing with enhanced endmember class separation
    • DOI 10.1364/AO.43.006596
    • M. T. Eismann and R. C. Hardie, "Stochastic spectral unmixing with enhanced endmember class separation," Appl. Optics, vol. 43, no. 36, pp. 6596-6608, 2004. (Pubitemid 40120775)
    • (2004) Applied Optics , vol.43 , Issue.36 , pp. 6596-6608
    • Eismann, M.T.1    Hardie, R.C.2
  • 21
    • 0032710686 scopus 로고    scopus 로고
    • Optimal linear spectral unmixing
    • Jan.
    • Y. Hu, H. Lee, and F. Scarpace, "Optimal linear spectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 639-644, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 639-644
    • Hu, Y.1    Lee, H.2    Scarpace, F.3
  • 23
    • 84875636570 scopus 로고    scopus 로고
    • Aregularization based method for spectral unmixing of imaging spectrometer data
    • J. S. Bhatt, M. V. Joshi, and M. S. Raval, "Aregularization based method for spectral unmixing of imaging spectrometer data," in Proc. SPIE, vol. 8537, pp. 85370J1-85370J7, 2012.
    • (2012) Proc. SPIE , vol.8537
    • Bhatt, J.S.1    Joshi, M.V.2    Raval, M.S.3
  • 24
    • 34047244201 scopus 로고    scopus 로고
    • A maximum entropy approach to unsupervised mixed-pixel decomposition
    • DOI 10.1109/TIP.2006.891350
    • L. Miao, H. Qi, and H. Szu, "Amaximum entropy approach to unsupervised mixed-pixel decomposition," IEEE Trans. Image Process., vol. 16, no. 4, pp. 1008-1021, Apr. 2007. (Pubitemid 46546106)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.4 , pp. 1008-1021
    • Miao, L.1    Qi, H.2    Szu, H.3
  • 25
    • 33645278665 scopus 로고    scopus 로고
    • Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods
    • S. Moussaoui, C. Carteret, C. Brie, and A. Mohammad-Djafari, "Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods," Chemom. Intell. Lab. Syst., vol. 81, no. 2, pp. 137-148, 2006.
    • (2006) Chemom. Intell. Lab. Syst. , vol.81 , Issue.2 , pp. 137-148
    • Moussaoui, S.1    Carteret, C.2    Brie, C.3    Mohammad-Djafari, A.4
  • 26
    • 78049262926 scopus 로고    scopus 로고
    • Implementation strategies for hyperspectral unmixing using bayesian source separation
    • Nov.
    • F. Schmidt et al., "Implementation strategies for hyperspectral unmixing using bayesian source separation," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4000-4013, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4000-4013
    • Schmidt, F.1
  • 27
    • 0035391620 scopus 로고    scopus 로고
    • A spectral mixture process conditioned by Gibbs-based partitioning
    • DOI 10.1109/36.934074, PII S0196289201055036
    • R. Rand and D. Keenan, "A spectral mixture process conditioned by Gibbsbased partitioning," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1421-1434, Jul. 2001. (Pubitemid 32732656)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1421-1434
    • Rand, R.S.1    Keenan, D.M.2
  • 28
    • 80455155174 scopus 로고    scopus 로고
    • Enhancing hyperspectral image unmixing with spatial correlations
    • Nov.
    • O. Eches, N. Dobigeon, and J.-Y. Tourneret, "Enhancing hyperspectral image unmixing with spatial correlations," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4239-4247, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4239-4247
    • Eches, O.1    Dobigeon, N.2    Tourneret, J.-Y.3
  • 29
    • 84875683221 scopus 로고    scopus 로고
    • A parametric statistical model over spectral space for the unmixing of imaging spectrometer data
    • J. S. Bhatt, M. V. Joshi, and M. S. Raval, "A parametric statistical model over spectral space for the unmixing of imaging spectrometer data," in Proc. SPIE, vol. 8537, pp. 85371J1-85371J7, 2012.
    • (2012) Proc. SPIE , vol.8537
    • Bhatt, J.S.1    Joshi, M.V.2    Raval, M.S.3
  • 30
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • P. J. Huber, "Robust estimation of a location parameter," Ann. Math. Statist., vol. 35, no. 1, pp. 73-101, 1964.
    • (1964) Ann. Math. Statist. , vol.35 , Issue.1 , pp. 73-101
    • Huber, P.J.1
  • 31
    • 20544457783 scopus 로고
    • Subpixel detection methods: Spectral unmixing, correlation processing and when they are appropriate
    • A. P. Schaum and A. D. Stocker, "Subpixel detection methods: Spectral unmixing, correlation processing and when they are appropriate," in Proc. Int. Symp. Spectral Sens. Res., 1994.
    • (1994) Proc. Int. Symp. Spectral Sens. Res.
    • Schaum, A.P.1    Stocker, A.D.2
  • 32
    • 34250858086 scopus 로고
    • Optimal estimation of contour properties by cross-validated regularization
    • Jun.
    • B. Shahraray and D. Anderson, "Optimal estimation of contour properties by cross-validated regularization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 6, pp. 600-610, Jun. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.6 , pp. 600-610
    • Shahraray, B.1    Anderson, D.2
  • 33
    • 0141596527 scopus 로고    scopus 로고
    • Media Lab, Cambridge, MA, MIT Tech. Rep. 2000, revised 2003
    • T. P. Minka, "Estimating a Dirichlet distribution," Media Lab, Cambridge, MA, MIT Tech. Rep., 2000, revised 2003, 2009.
    • (2009) Estimating A Dirichlet Distribution
    • Minka, T.P.1
  • 34
    • 80455155063 scopus 로고    scopus 로고
    • Analysis of imaging spectrometer data using n-dimensional geometry and a mixture-tuned matched filtering approach
    • Nov.
    • J. W. Boardman and F. A. Kruse, "Analysis of imaging spectrometer data using n-dimensional geometry and a mixture-tuned matched filtering approach," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4138-4152, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4138-4152
    • Boardman, J.W.1    Kruse, F.A.2
  • 36
    • 80455164727 scopus 로고    scopus 로고
    • Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm
    • Nov.
    • B. Zhang, X. Sun, L. Gao, and L. Yang, "Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4173-4176, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4173-4176
    • Zhang, B.1    Sun, X.2    Gao, L.3    Yang, L.4
  • 37
    • 84861738326 scopus 로고    scopus 로고
    • Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification
    • Apr.
    • H. Yang, Q. Du, and G. Chen, "Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 544-554, Apr. 2012.
    • (2012) J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 544-554
    • Yang, H.1    Du, Q.2    Chen, G.3
  • 38
    • 85032751209 scopus 로고    scopus 로고
    • A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
    • Jan.
    • W.-K. Ma et al., "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67-81, Jan. 2014.
    • (2014) Signal Process. Mag. , vol.31 , Issue.1 , pp. 67-81
    • Ma, W.-K.1
  • 39
    • 0642334046 scopus 로고    scopus 로고
    • A fast non-negativity-constrained least squares algorithm
    • R. Bro and S. Jong, "A fast non-negativity constrained least squares algorithm," J. Chemom., vol. 11, pp. 393-401, 1997. (Pubitemid 127478570)
    • (1997) Journal of Chemometrics , vol.11 , Issue.5 , pp. 393-401
    • Bro, R.1    De Jong, S.2
  • 40
    • 84905900947 scopus 로고    scopus 로고
    • [Online] Available
    • [Online]. Available: ftp://popo.jpl.nasa.gov/pub/free-data/f080611t01p00r 06rdn-c/
  • 41
    • 85032751127 scopus 로고    scopus 로고
    • Mean squared error: Love it or leave it? A new look at signal fidelity measures
    • Jan.
    • Z. Wang and A. C. Bovik, "Mean squared error: Love it or leave it? A new look at signal fidelity measures," IEEE Signal Process. Mag., vol. 26, no. 1, pp. 98-117, Jan. 2009.
    • (2009) Signal Process. Mag. , vol.26 , Issue.1 , pp. 98-117
    • Wang, Z.1    Bovik, A.C.2
  • 42
    • 0001256711 scopus 로고
    • Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
    • R. Yuhans, A. Goetz, and J. Boardman, "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm," in Proc. Summaries 3rd Ann. JPL Airborne Geosci. Workshop, 1992, vol. 1, pp. 147-149.
    • (1992) Proc. Summaries 3rd Ann. JPL Airborne Geosci. Workshop , vol.1 , pp. 147-149
    • Yuhans, R.1    Goetz, A.2    Boardman, J.3
  • 43
    • 0034248782 scopus 로고    scopus 로고
    • An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis
    • Aug.
    • C.-I. Chang, "An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis," IEEE Trans. Inf. Theory, vol. 46, no. 5, pp. 1927-1932, Aug. 2000.
    • (2000) IEEE Trans. Inf. Theory , vol.46 , Issue.5 , pp. 1927-1932
    • Chang, C.-I.1
  • 47
    • 0036493909 scopus 로고    scopus 로고
    • A universal image quality index
    • DOI 10.1109/97.995823, PII S1070990802048198
    • Z. Wang and A. C. Bovik, "A universal image quality index," IEEE Signal Process. Lett., vol. 9, no. 3, pp. 81-84, Mar. 2002. (Pubitemid 34554870)
    • (2002) IEEE Signal Processing Letters , vol.9 , Issue.3 , pp. 81-84
    • Wang, Z.1    Bovik, A.C.2
  • 48
    • 21144456298 scopus 로고    scopus 로고
    • Optimal choice of parameters for particle swarm optimization
    • DOI 10.1631/jzus.2005.A0528
    • L.-P. Zhang, H.-J. Yu, and S.-X. Hu, "Optimal choice of parameters for particle swarm optimization," J. Zhejiang Univ. Sci. A, vol. 6, no. 6, pp. 528-534, 2005. (Pubitemid 40879456)
    • (2005) Journal of Zhejiang University: Science , vol.A6 , Issue.6 , pp. 528-534
    • Zhang, L.-P.1    Yu, H.-J.2    Hu, S.-X.3
  • 49
    • 0028501607 scopus 로고
    • A review of techniques for parameter sensitivity analysis of environment models
    • D. Hamby, "A review of techniques for parameter sensitivity analysis of environment models," Environ. Monit. Assess., vol. 32, no. 2, pp. 135-154, 1994.
    • (1994) Environ. Monit. Assess. , vol.32 , Issue.2 , pp. 135-154
    • Hamby, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.