메뉴 건너뛰기




Volumn , Issue , 2014, Pages 4818-4822

Introducing shared-hidden-layer autoencoders for transfer learning and their application in acoustic emotion recognition

Author keywords

Cross Corpus; Emotion Recognition; Shared Hidden Layer Autoencoder; Transfer Learning

Indexed keywords

DATABASE SYSTEMS; LEARNING SYSTEMS;

EID: 84905276961     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6854517     Document Type: Conference Paper
Times cited : (83)

References (29)
  • 2
    • 0033746018 scopus 로고    scopus 로고
    • Robustness to telephone handset distortion in speaker recognition by discriminative feature design
    • L. P Heck, Y. Konig, M K. Sonmez, and M. Weintraub, "Robustness to telephone handset distortion in speaker recognition by discriminative feature design, " Speech Communication, vol. 31, no. 2, pp. 181-192, 2000.
    • (2000) Speech Communication , vol.31 , Issue.2 , pp. 181-192
    • Heck, L.P.1    Konig, Y.2    Sonmez, M.K.3    Weintraub, M.4
  • 4
    • 84857841688 scopus 로고    scopus 로고
    • Recognizing affect from linguistic information in 3d continuous space
    • October-December
    • B. Schuller, "Recognizing affect from linguistic information in 3d continuous space, " IEEE Transactions on Affective Computing, vol. 2, no. 4, pp. 192-205, October-December 2012.
    • (2012) IEEE Transactions on Affective Computing , vol.2 , Issue.4 , pp. 192-205
    • Schuller, B.1
  • 5
    • 78649328053 scopus 로고    scopus 로고
    • Survey on speech emotion recognition: Features, classification schemes, and databases
    • M. El Ayadi, M. S Kamel, and F. Karray, "Survey on speech emotion recognition: Features, classification schemes, and databases, " Pattern Recognition, vol. 44, no. 3, pp. 572-587, 2011.
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 572-587
    • El Ayadi, M.1    Kamel, M.S.2    Karray, F.3
  • 6
    • 85047302788 scopus 로고    scopus 로고
    • Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011
    • C.-N. Anagnostopoulos, T. Iliou, and I. Giannoukos, "Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011, " Artificial Intelligence Review, pp. 1-23, 2012.
    • (2012) Artificial Intelligence Review , pp. 1-23
    • Anagnostopoulos, C.-N.1    Iliou, T.2    Giannoukos, I.3
  • 8
    • 84905265480 scopus 로고    scopus 로고
    • Towards a standard set of acoustic features for the processing of emotion in speech
    • Acoustical Society of America
    • F. Eyben, A. Batliner, and B. Schuller, "Towards a standard set of acoustic features for the processing of emotion in speech, " in Proc. of Meetings on Acoustics. 2012, Acoustical Society of America.
    • (2012) Proc. of Meetings on Acoustics
    • Eyben, F.1    Batliner, A.2    Schuller, B.3
  • 9
    • 79959813736 scopus 로고    scopus 로고
    • A novel feature extraction strategy for multi-stream robust emotion identification
    • G. Liu, Y. Lei, and J. H. Hansen, "A novel feature extraction strategy for multi-stream robust emotion identification, " in Proc. of INTERSPEECH, 2010, pp. 482-485.
    • (2010) Proc. of INTERSPEECH , pp. 482-485
    • Liu, G.1    Lei, Y.2    Hansen, J.H.3
  • 10
    • 84893302329 scopus 로고    scopus 로고
    • Sparse autoencoder-based feature transfer learning for speech emotion recognition
    • Geneva, Switzerland, HUMAINE Association, IEEE
    • J. Deng, Z. Zhang, E. Marchi, and B. Schuller, "Sparse autoencoder-based feature transfer learning for speech emotion recognition, " in Proc. of ACII, Geneva, Switzerland, 2013, HUMAINE Association, pp. 511-516, IEEE.
    • (2013) Proc. of ACII , pp. 511-516
    • Deng, J.1    Zhang, Z.2    Marchi, E.3    Schuller, B.4
  • 12
    • 67049174125 scopus 로고    scopus 로고
    • Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection
    • T. Kanamori, S. Hido, and M. Sugiyama, "Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection, " in Proc. of NIPS, 2008, pp. 809-816.
    • (2008) Proc. of NIPS , pp. 809-816
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 13
    • 52649148544 scopus 로고    scopus 로고
    • Direct importance estimation with model selectionand its application to covariate shift adaptation
    • M. Sugiyama, S. Nakajima, H. Kashima, P. von Bunau, and M. Kawanabe, "Direct importance estimation with model selectionand its application to covariate shift adaptation, " in Proc. of NIPS, 2007, pp. 1433-1440.
    • (2007) Proc. of NIPS , pp. 1433-1440
    • Sugiyama, M.1    Nakajima, S.2    Kashima, H.3    Von Bunau, P.4    Kawanabe, M.5
  • 16
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Vancouver, Canada
    • I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A.Y. Ng, "Measuring invariances in deep networks, " in Proc. of NIPS, Vancouver, Canada, 2009, pp. 646-654.
    • (2009) Proc. of NIPS , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Lee, H.4    Ng, A.Y.5
  • 18
    • 84872343315 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Bellevue, U. S. A
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning, " in Proc. of ICML, Bellevue, U. S. A., 2011.
    • (2011) Proc. of ICML
    • Bengio, Y.1
  • 20
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E Hinton and R. R Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 21
    • 84906237972 scopus 로고    scopus 로고
    • Using denoising autoencoder for emotion recognition
    • R. Xia and Y. Liu, "Using denoising autoencoder for emotion recognition, " in Proc. of INTERSPEECH, 2013.
    • (2013) Proc. of INTERSPEECH
    • Xia, R.1    Liu, Y.2
  • 22
    • 84858985413 scopus 로고    scopus 로고
    • Unsupervised learning in cross-corpus acoustic emotion recognition
    • Big Island, HY
    • Z. Zhang, F. Weninger, M. Wollmer, and B. Schuller, "Unsupervised Learning in Cross-Corpus Acoustic Emotion Recognition, " in Proc. of ASRU, Big Island, HY, 2011, pp. 523-528.
    • (2011) Proc. of ASRU , pp. 523-528
    • Zhang, Z.1    Weninger, F.2    Wollmer, M.3    Schuller, B.4
  • 24
    • 70450206416 scopus 로고    scopus 로고
    • The interspeech 2009 emotion challenge
    • Brisbane, U. K
    • B. Schuller, S. Steidl, and A. Batliner, "The INTERSPEECH 2009 Emotion Challenge, " in Proc. of INTERSPEECH, Brisbane, U. K., 2009, pp. 2794-2797.
    • (2009) Proc. of INTERSPEECH , pp. 2794-2797
    • Schuller, B.1    Steidl, S.2    Batliner, A.3
  • 25
    • 34547514189 scopus 로고    scopus 로고
    • Audiovisual behavior modeling by combined feature spaces
    • Honolulu, HY
    • B. Schuller, D. Arsic, G. Rigoll, M. Wimmer, and B. Radig, "Audiovisual behavior modeling by combined feature spaces, " in Proc. of ICASSP, Honolulu, HY, 2007, vol. II, pp. 733-736.
    • (2007) Proc. of ICASSP , vol.2 , pp. 733-736
    • Schuller, B.1    Arsic, D.2    Rigoll, G.3    Wimmer, M.4    Radig, B.5
  • 26
    • 85089273681 scopus 로고    scopus 로고
    • Getting started with SUSAS: A speech under simulated and actual stress database
    • Rhodes, Greece
    • J.H.L. Hansen and S. Bou-Ghazale, "Getting started with SUSAS: A speech under simulated and actual stress database, " in Proc. of EUROSPEECH-97, Rhodes, Greece, 1997.
    • (1997) Proc. of EUROSPEECH-97
    • Hansen, J.H.L.1    Bou-Ghazale, S.2
  • 27
    • 77949415384 scopus 로고    scopus 로고
    • OpenEAR - Introducing the Munich open-source emotion and affect recognition toolkit
    • F. Eyben, M. Wollmer, and B. Schuller, "openEAR - Introducing the Munich open-source emotion and affect recognition toolkit, " in Proc. of ACII, Amsterdam, 2009, pp. 576-581.
    • (2009) Proc. of ACII, Amsterdam , pp. 576-581
    • Eyben, F.1    Wollmer, M.2    Schuller, B.3
  • 29
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Bellevue, U. S. A
    • X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment classification: A deep learning approach, " in Proc. of ICML, Bellevue, U. S. A., 2011
    • (2011) Proc. of ICML
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.