메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3997-4002

Urban water demand forecasting by LS-SVM with tuning based on elitist teaching-learning-based optimization

Author keywords

ATLBO; LS SVM; Water Demand Forecasting

Indexed keywords

FORECASTING; PARTICLE SWARM OPTIMIZATION (PSO); WATER SUPPLY SYSTEMS;

EID: 84905262884     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCDC.2014.6852880     Document Type: Conference Paper
Times cited : (31)

References (20)
  • 1
    • 78549256372 scopus 로고    scopus 로고
    • Predictive models for forecasting hourly urban water demand
    • M. Herrera, L. Torgo, J. Izquierdo et al., Predictive models for forecasting hourly urban water demand, " Journal of Hydrology, Vol. 387, No. 1, 141-150, 2010.
    • (2010) Journal of Hydrology , vol.387 , Issue.1 , pp. 141-150
    • Herrera, M.1    Torgo, L.2    Izquierdo, J.3
  • 2
    • 34547253978 scopus 로고    scopus 로고
    • Energy management strategies use short-term water consumption forecasting to minimize cost of pumping operations
    • L. Jentgen, H. Kidder, R. Hill et al., Energy management strategies use short-term water consumption forecasting to minimize cost of pumping operations, Journal American Water Works Association, Vol. 99, No. 6, 86, 2007.
    • (2007) Journal American Water Works Association , vol.99 , Issue.6 , pp. 86
    • Jentgen, L.1    Kidder, H.2    Hill, R.3
  • 3
    • 41149106828 scopus 로고    scopus 로고
    • Probabilistic prediction of urban water consumption using the SCEM-UA algorithm
    • P. Cutore, A. Campisano, Z. Kapelan et al., Probabilistic prediction of urban water consumption using the SCEM-UA algorithm, Urban Water Journal, Vol. 5, No. 2, 125-132, 2008.
    • (2008) Urban Water Journal , vol.5 , Issue.2 , pp. 125-132
    • Cutore, P.1    Campisano, A.2    Kapelan, Z.3
  • 5
    • 34047256585 scopus 로고    scopus 로고
    • Temperature and rainfall thresholds for base use urban water demand modelling
    • S. Gato, N. Jayasuriya, and P. Roberts, Temperature and rainfall thresholds for base use urban water demand modelling, Journal of Hydrology, Vol. 337, No. 3, 364-376, 2007.
    • (2007) Journal of Hydrology , vol.337 , Issue.3 , pp. 364-376
    • Gato, S.1    Jayasuriya, N.2    Roberts, P.3
  • 8
    • 84873559725 scopus 로고    scopus 로고
    • A soft sensor for carbon content of spent catalyst in a continuous eforming plant using LSSVM-GA
    • W. Yuqiao, C. Guangxu, H. Haijun et al., A soft sensor for carbon content of spent catalyst in a continuous eforming plant using LSSVM-GA. Proceedings of 31st Chinese Control Conference, 7056-7060, 2012.
    • (2012) Proceedings of 31st Chinese Control Conference , pp. 7056-7060
    • Yuqiao, W.1    Guangxu, C.2    Haijun, H.3
  • 9
    • 73449084765 scopus 로고    scopus 로고
    • Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system
    • Q. Wu, Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system, Journal of Computational and Applied Mathematics, Vol. 233, No. 10, 2481-2491, 2010.
    • (2010) Journal of Computational and Applied Mathematics , vol.233 , Issue.10 , pp. 2481-2491
    • Wu, Q.1
  • 10
    • 84855897694 scopus 로고    scopus 로고
    • Least squares support vector machines with tuning based on chaotic differential eVolution approach applied to the identification of a thermal process
    • G. S. dos Santos, L. G. J. Luvizotto, V. C. Mariani et al., Least squares support vector machines with tuning based on chaotic differential eVolution approach applied to the identification of a thermal process, Expert Systems with Applications, Vol. 39, No. 5, 4805-4812, 2012.
    • (2012) Expert Systems with Applications , vol.39 , Issue.5 , pp. 4805-4812
    • Dos Santos, G.S.1    Luvizotto, L.G.J.2    Mariani, V.C.3
  • 11
    • 70449525203 scopus 로고    scopus 로고
    • Power load forecasting using support vector machine and ant colony optimization
    • D. Niu, Y. Wang, and D. D. Wu, Power load forecasting using support vector machine and ant colony optimization, Expert Systems with Applications, Vol. 37, No. 3, 2531-2539, 2010.
    • (2010) Expert Systems with Applications , vol.37 , Issue.3 , pp. 2531-2539
    • Niu, D.1    Wang, Y.2    Wu, D.D.3
  • 12
    • 84870375793 scopus 로고    scopus 로고
    • Hybrid of artificial immune system and particle swarm optimization-based support vector machine for Radio Frequency Identification-based positioning system
    • R. Kuo, C. Chen, T. Warren Liao et al., Hybrid of artificial immune system and particle swarm optimization-based support vector machine for Radio Frequency Identification-based positioning system, Computers &Industrial Engineering, Vol. 64, No. 1, 333-341, 2013.
    • (2013) Computers &Industrial Engineering , vol.64 , Issue.1 , pp. 333-341
    • Kuo, R.1    Chen, C.2    Warren Liao, T.3
  • 13
    • 79955482677 scopus 로고    scopus 로고
    • Evolution strategies based adaptive LS-SVM
    • L. Wei, Z. Chen, and J. Li, Evolution strategies based adaptive LS-SVM, Information Sciences, Vol. 181, No. 14, 3000-3016, 2011.
    • (2011) Information Sciences , vol.181 , Issue.14 , pp. 3000-3016
    • Wei, L.1    Chen, Z.2    Li, J.3
  • 15
    • 84871926704 scopus 로고    scopus 로고
    • Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm
    • W. Zhang, P. Niu, G. Li et al., Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm, Knowledge-Based Systems, Vol. 39, 34-44, 2012.
    • (2012) Knowledge-Based Systems , vol.39 , pp. 34-44
    • Zhang, W.1    Niu, P.2    Li, G.3
  • 16
    • 78951475022 scopus 로고    scopus 로고
    • Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
    • R. V. Rao, V. J. Savsani, and D. P. Vakharia, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Computer-Aided Design, Vol. 43, No. 3, 303-315, 2011.
    • (2011) Computer-Aided Design , vol.43 , Issue.3 , pp. 303-315
    • Rao, R.V.1    Savsani, V.J.2    Vakharia, D.P.3
  • 17
    • 84878200883 scopus 로고    scopus 로고
    • Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching-learning-based optimization
    • Guoqiang Li, Peifeng Niu, Weiping Zhang and Yongchao Liu, Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching-learning-based optimization, Chemometrics and Intelligent Laboratory Systems, Vol. 126, 11-20, 2013.
    • (2013) Chemometrics and Intelligent Laboratory Systems , vol.126 , pp. 11-20
    • Li, G.1    Niu, P.2    Zhang, W.3    Liu, Y.4
  • 18
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVM hyper-parameter selection based on particle swarm optimization
    • X. C. Guo, J. H. Yang, C. G. Wu, et al., A novel LS-SVM hyper-parameter selection based on particle swarm optimization, Neurocomputing, Vol. 71, 3211-3215, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 3211-3215
    • Guo, X.C.1    Yang, J.H.2    Wu, C.G.3
  • 19
    • 84864334765 scopus 로고    scopus 로고
    • Feature selection and LS-SVM parameter optimization algorithm based on PSO
    • Quanzhu Yao, Jie Cai, Feature selection and LS-SVM parameter optimization algorithm based on PSO, Computer Engineering and Application, Vol. 46, No. 1, 134-136, 2010.
    • (2010) Computer Engineering and Application , vol.46 , Issue.1 , pp. 134-136
    • Yao, Q.1    Cai, J.2
  • 20
    • 84905225740 scopus 로고    scopus 로고
    • Survey of teaching-learning-based optimization algorithms
    • Shouheng Tuo, Longquan Yong, and Fangan Deng, Survey of teaching-learning-based optimization algorithms, Application Research of Computers, Vol. 30, No. 7, 2013
    • (2013) Application Research of Computers , vol.30 , Issue.7
    • Tuo, S.1    Yong, L.2    Deng, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.