메뉴 건너뛰기




Volumn , Issue , 2012, Pages 7056-7060

A soft sensor for carbon content of spent catalyst in a continuous eforming plant using LSSVM-GA

Author keywords

Carbon Content; Genetic Algorithm; Least Squares Support Vector Machine; Soft Sensor

Indexed keywords

CARBON CONTENT; CARBON DEPOSITION; FREE PARAMETERS; GASOLINE BLENDING; GASOLINE FUELS; HYDROCARBON PROCESSING; INDUSTRIAL PROBLEM; LEAST SQUARES SUPPORT VECTOR MACHINES; PERFORMANCE FACTORS; PREDICTIVE VALUES; REAL TIME; REFORMING CATALYST; SOFT SENSORS; SPENT CATALYST;

EID: 84873559725     PISSN: 19341768     EISSN: 21612927     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (25)
  • 1
    • 0002413330 scopus 로고
    • Contemplative stance for chemical process control: An IFAC report
    • T.J. McAvoy, Contemplative stance for chemical process control: An IFAC report, Automatica, 28(2): 441-442, 1992.
    • (1992) Automatica , vol.28 , Issue.2 , pp. 441-442
    • Mcavoy, T.J.1
  • 4
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensor
    • P. Kadlec, R. Grbic, B. Gabrys, Review of adaptation mechanisms for data-driven soft sensor, Computers and Chemical Engineering, 35(1): 1-24, 2011.
    • (2011) Computers and Chemical Engineering , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 5
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation columns
    • L. Fortuna, S. Graziani, M.G Xibilia, Soft sensors for product quality monitoring in debutanizer distillation columns, Control Engineering Practice, 13(4): 499-508, 2005.
    • (2005) Control Engineering Practice , vol.13 , Issue.4 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 6
    • 40849136053 scopus 로고    scopus 로고
    • Soft-sensor for online estimation of ethanol concentrations in wine stills
    • D. Osorio, J. Ricardo, E. Agosin, M. Cabrera, Soft-sensor for online estimation of ethanol concentrations in wine stills, Journal of Food Engineering, 87(4): 571-577, 2008.
    • (2008) Journal of Food Engineering , vol.87 , Issue.4 , pp. 571-577
    • Osorio, D.1    Ricardo, J.2    Agosin, E.3    Cabrera, M.4
  • 8
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • P. Facco, F. Doplicher, F. Bezzo, M. Barolo, Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process, Journal of Process Control, 19(3): 520-529, 2009.
    • (2009) Journal of Process Control , vol.19 , Issue.3 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 10
    • 80052809967 scopus 로고    scopus 로고
    • Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
    • K. Chen, J. Ji, H.Q. Wang, Y. Liu, Z.H. Song, Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes, Chemical Engineering Research and Design, 89(10): 2117-2114, 2011.
    • (2011) Chemical Engineering Research and Design , vol.89 , Issue.10 , pp. 2117-2114
    • Chen, K.1    Ji, J.2    Wang, H.Q.3    Liu, Y.4    Song, Z.H.5
  • 12
    • 33144459635 scopus 로고    scopus 로고
    • Response modeling with support vector machines
    • H.J. Shin, S. Cho, Response modeling with support vector machines, Expert Systems with Applications, 30(4): 746-760, 2006.
    • (2006) Expert Systems with Applications , vol.30 , Issue.4 , pp. 746-760
    • Shin, H.J.1    Cho, S.2
  • 13
    • 0032638628 scopus 로고    scopus 로고
    • Least square support vector machines classifier
    • J.A.K. Suykens, J. Vandewalle, Least square support vector machines classifier, Neural Processing Letters, 9(3): 293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 14
    • 33748469376 scopus 로고    scopus 로고
    • On-line estimation of biomass in fermentation process using support vector machine
    • J.L. Wang, T. Yu, CY. Jin, On-line estimation of biomass in fermentation process using support vector machine, Chinese Journal of Chemical Engineering, 14(3): 383-388, 2006.
    • (2006) Chinese Journal of Chemical Engineering , vol.14 , Issue.3 , pp. 383-388
    • Wang, J.L.1    Yu, T.2    Jin, C.Y.3
  • 15
    • 33748886700 scopus 로고    scopus 로고
    • Discriminating the genuineness of Chinese medicines using least squares support vector machines
    • KYu, YY. Cheng, Discriminating the genuineness of Chinese medicines using least squares support vector machines, Chinese Journal of Analytical Chemistry, 34(4): 561-564, 2006.
    • (2006) Chinese Journal of Analytical Chemistry , vol.34 , Issue.4 , pp. 561-564
    • Yu, K.1    Cheng, Y.Y.2
  • 16
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • P. Jain, I. Rahman, B.D. Kulkarni, Development of a soft sensor for a batch distillation column using support vector regression techniques, Chemical Engineering Research and Design, 82(2): 283-287, 2007.
    • (2007) Chemical Engineering Research and Design , vol.82 , Issue.2 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 17
    • 53149109688 scopus 로고    scopus 로고
    • A feasibility study on on-line determination of rice wine composition by vis-NIR spectroscopy and least-squares support vector machines
    • HY. Yu, XY. Niu, H.J. Lin, Y.B. Ying, B.B. Li, XX. Pan, A feasibility study on on-line determination of rice wine composition by Vis-NIR spectroscopy and least-squares support vector machines, Food Chemistry, 113 (1): 291-296, 2009.
    • (2009) Food Chemistry , vol.113 , Issue.1 , pp. 291-296
    • Yu, H.Y.1    Niu, X.Y.2    Lin, H.J.3    Ying, Y.B.4    Li, B.B.5    Pan, X.X.6
  • 18
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • C.W. Hsu, C.J. Lin, A simple decomposition method for support vector machines, Machine Learning, 46(1-3): 291-314, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 291-314
    • Hsu, C.W.1    Lin, C.J.2
  • 20
    • 33748076461 scopus 로고    scopus 로고
    • A Ga-Based featured selection and parameters optimization for support vector machines
    • C.L. Huang, C.J. Wang, A GA-based featured selection and parameters optimization for support vector machines, Expert Systems with Applications, 31(2): 231-240, 2006.
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 21
    • 33644693593 scopus 로고    scopus 로고
    • System reliability forecasting by support vector machines with genetic algorithms
    • P.F. Pai, System reliability forecasting by support vector machines with genetic algorithms, Mathematical and Computer Modelling, 43(3-4): 262-274, 2006.
    • (2006) Mathematical and Computer Modelling , vol.43 , Issue.3-4 , pp. 262-274
    • Pai, P.F.1
  • 22
    • 58349107243 scopus 로고    scopus 로고
    • Support vector machine with genetic algorithm for forecasting of key-gas ratios in oil-immersed transformer
    • S.W. Fei, C.L. Liu, Y.B. Miao, Support vector machine with genetic algorithm for forecasting of key-gas ratios in oil-immersed transformer, Expert Systems with Application, 36(3): 6326-6331, 2009.
    • (2009) Expert Systems with Application , vol.36 , Issue.3 , pp. 6326-6331
    • Fei, S.W.1    Liu, C.L.2    Miao, Y.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.