메뉴 건너뛰기




Volumn 55, Issue 7, 2014, Pages 1519-1534

Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization

Author keywords

Data disambiguation; Extension principle; Fuzzy sets; Imprecise data; Loss function; Machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUZZY SETS; LEARNING SYSTEMS;

EID: 84905111276     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2013.09.003     Document Type: Conference Paper
Times cited : (108)

References (32)
  • 1
    • 79958089470 scopus 로고    scopus 로고
    • On the possibilistic approach to linear regression with rounded or interval-censored data
    • M. Cerny, and M. Rada On the possibilistic approach to linear regression with rounded or interval-censored data Meas. Sci. Rev. 11 2 2011 34 40
    • (2011) Meas. Sci. Rev. , vol.11 , Issue.2 , pp. 34-40
    • Cerny, M.1    Rada, M.2
  • 2
    • 0035313747 scopus 로고    scopus 로고
    • Fuzzy regression methods - A comparative assessment
    • Y. Changa, and B. Ayyubb Fuzzy regression methods - a comparative assessment Fuzzy Sets Syst. 119 2 2001 187 203
    • (2001) Fuzzy Sets Syst. , vol.119 , Issue.2 , pp. 187-203
    • Changa, Y.1    Ayyubb, B.2
  • 3
    • 54549108812 scopus 로고    scopus 로고
    • Learning from partially supervised data using mixture models and belief functions
    • E. Côme, L. Oukhellou, T. Denoeux, and P. Aknin Learning from partially supervised data using mixture models and belief functions Pattern Recognit. 42 3 2009 334 348
    • (2009) Pattern Recognit. , vol.42 , Issue.3 , pp. 334-348
    • Côme, E.1    Oukhellou, L.2    Denoeux, T.3    Aknin, P.4
  • 5
    • 70350047129 scopus 로고    scopus 로고
    • On the variability of the concept of variance for fuzzy random variables
    • I. Couso, and D. Dubois On the variability of the concept of variance for fuzzy random variables IEEE Trans. Fuzzy Syst. 17 2009 1070 1080
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , pp. 1070-1080
    • Couso, I.1    Dubois, D.2
  • 6
    • 80052261743 scopus 로고    scopus 로고
    • Maximum likelihood estimation from fuzzy data using the em algorithm
    • T. Denoeux Maximum likelihood estimation from fuzzy data using the EM algorithm Fuzzy Sets Syst. 183 1 2011 72 91
    • (2011) Fuzzy Sets Syst. , vol.183 , Issue.1 , pp. 72-91
    • Denoeux, T.1
  • 7
    • 84870426604 scopus 로고    scopus 로고
    • Maximum likelihood estimation from uncertain data in the belief function framework
    • T. Denoeux Maximum likelihood estimation from uncertain data in the belief function framework IEEE Trans. Knowl. Data Eng. 25 1 2013 119 130
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 119-130
    • Denoeux, T.1
  • 8
    • 0000325717 scopus 로고
    • Fuzzy least squares
    • P. Diamond Fuzzy least squares Inf. Sci. 46 1988 141 157
    • (1988) Inf. Sci. , vol.46 , pp. 141-157
    • Diamond, P.1
  • 10
    • 84862206799 scopus 로고    scopus 로고
    • Ontic vs epistemic fuzzy sets in modeling and data processing tasks
    • K. Madani, J. Kacprzyk, J. Filipe, International Conference on Neural Computation Theory and Applications, Paris
    • D. Dubois Ontic vs. epistemic fuzzy sets in modeling and data processing tasks K. Madani, J. Kacprzyk, J. Filipe, Proc. IJCCI (NCTA) International Conference on Neural Computation Theory and Applications, Paris 2011
    • (2011) Proc. IJCCI (NCTA)
    • Dubois, D.1
  • 11
    • 34548683006 scopus 로고    scopus 로고
    • Gradual elements in a fuzzy set
    • DOI 10.1007/s00500-007-0187-6
    • D. Dubois, and H. Prade Gradual elements in a fuzzy set Soft Comput. 12 2 2008 165 175 (Pubitemid 47412748)
    • (2008) Soft Computing , vol.12 , Issue.2 , pp. 165-175
    • Dubois, D.1    Prade, H.2
  • 13
    • 56049101859 scopus 로고    scopus 로고
    • Estimation of a simple linear regression model for fuzzy random variables
    • G. Gonzalez-Rodriguez, A. Blanco, A. Colubi, and M. Lubiano Estimation of a simple linear regression model for fuzzy random variables Fuzzy Sets Syst. 160 3 2009 357 370
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.3 , pp. 357-370
    • Gonzalez-Rodriguez, G.1    Blanco, A.2    Colubi, A.3    Lubiano, M.4
  • 15
    • 70450118721 scopus 로고    scopus 로고
    • Learning from ambiguously labeled examples
    • E. Hüllermeier, and J. Beringer Learning from ambiguously labeled examples Intell. Data Anal. 10 5 2006 419 440
    • (2006) Intell. Data Anal. , vol.10 , Issue.5 , pp. 419-440
    • Hüllermeier, E.1    Beringer, J.2
  • 18
    • 6344232554 scopus 로고
    • Fuzzy random variables I: Definitions and theorems
    • H. Kwakernaak Fuzzy random variables I: Definitions and theorems Inf. Sci. 15 1978 1 29
    • (1978) Inf. Sci. , vol.15 , pp. 1-29
    • Kwakernaak, H.1
  • 19
    • 26944480882 scopus 로고
    • Fuzzy random variables II: Algorithms and examples for the discrete case
    • H. Kwakernaak Fuzzy random variables II: Algorithms and examples for the discrete case Inf. Sci. 17 1979 253 278
    • (1979) Inf. Sci. , vol.17 , pp. 253-278
    • Kwakernaak, H.1
  • 22
    • 84898962683 scopus 로고    scopus 로고
    • Margin maximizing loss functions
    • Advances in Neural Information Processing
    • S. Rosset, J. Zhu, and T. Hastie Margin maximizing loss functions Proceedings NIPS-2003 Advances in Neural Information Processing 2003
    • (2003) Proceedings NIPS-2003
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 23
    • 34548230003 scopus 로고    scopus 로고
    • Advocating the use of imprecisely observed data in genetic fuzzy systems
    • DOI 10.1109/TFUZZ.2007.895942
    • L. Sanchez, and I. Couso Advocating the use of imprecisely observed data in genetic fuzzy systems IEEE Trans. Fuzzy Syst. 15 4 2007 551 562 (Pubitemid 47316709)
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.4 , pp. 551-562
    • Sanchez, L.1    Couso, I.2
  • 24
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire The strength of weak learnability Mach. Learn. 5 2 1990 197 227
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 26
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira Improving predictive inference under covariate shift by weighting the log-likelihood function J. Stat. Plan. Inference 90 2 2000 227 244
    • (2000) J. Stat. Plan. Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 28
    • 84867352053 scopus 로고    scopus 로고
    • Interval-valued regression and classification models in the framework of machine learning
    • 7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria
    • L. Utkin, and F. Coolen Interval-valued regression and classification models in the framework of machine learning Proc. ISIPTA 2011 7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria 2011
    • (2011) Proc. ISIPTA 2011
    • Utkin, L.1    Coolen, F.2
  • 31
    • 84870290046 scopus 로고    scopus 로고
    • Towards fast and accurate algorithms for processing fuzzy data: Interval computations revisited
    • G. Xianga, and V. Kreinovich Towards fast and accurate algorithms for processing fuzzy data: Interval computations revisited Int. J. Gen. Syst. 42 2 2013
    • (2013) Int. J. Gen. Syst. , vol.42 , Issue.2
    • Xianga, G.1    Kreinovich, V.2
  • 32
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning, Parts 1-3
    • Inf. Sci. 8 1975 301 357 Inf. Sci. 9 1975 43 80
    • L. Zadeh The concept of a linguistic variable and its application to approximate reasoning, Parts 1-3 Inf. Sci. 8 1975 199 249 Inf. Sci. 8 1975 301 357 Inf. Sci. 9 1975 43 80
    • (1975) Inf. Sci. , vol.8 , pp. 199-249
    • Zadeh, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.