메뉴 건너뛰기




Volumn 55, Issue 7, 2014, Pages 1548-1569

Imprecise probability models for learning multinomial distributions from data. Applications to learning credal networks

Author keywords

Credal networks; Ignorance; Imprecise prior models; Imprecise probability; Learning

Indexed keywords

BAYESIAN NETWORKS; GRAPHIC METHODS;

EID: 84905092621     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2013.09.019     Document Type: Article
Times cited : (13)

References (50)
  • 1
    • 84858448141 scopus 로고    scopus 로고
    • Imprecise probabilities for representing ignorance about a parameter
    • 10.1016/j.ijar.2010.12.001
    • S. Moral Imprecise probabilities for representing ignorance about a parameter Int. J. Approx. Reason. 53 2012 347 362 10.1016/j.ijar.2010.12.001
    • (2012) Int. J. Approx. Reason. , vol.53 , pp. 347-362
    • Moral, S.1
  • 4
    • 0030327756 scopus 로고    scopus 로고
    • The selection of prior distributions by formal rules
    • R. Kass, and L. Wasserman The selection of prior distributions by formal rules J. Am. Stat. Assoc. 435 1996 1343 1370
    • (1996) J. Am. Stat. Assoc. , vol.435 , pp. 1343-1370
    • Kass, R.1    Wasserman, L.2
  • 5
    • 0033475167 scopus 로고    scopus 로고
    • Upper probabilities based only in the likelihood function
    • P. Walley, and S. Moral Upper probabilities based only in the likelihood function J. R. Stat. Soc. B 61 1996 831 847
    • (1996) J. R. Stat. Soc. B , vol.61 , pp. 831-847
    • Walley, P.1    Moral, S.2
  • 8
    • 84883246548 scopus 로고    scopus 로고
    • Inferences from multinomial data: Learning about a bag of marbles (with discussion)
    • P. Walley Inferences from multinomial data: learning about a bag of marbles (with discussion) J. R. Stat. Soc. B 58 1996 3 57
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 3-57
    • Walley, P.1
  • 9
    • 16344368295 scopus 로고    scopus 로고
    • An introduction to the imprecise Dirichlet model for multinomial data
    • DOI 10.1016/j.ijar.2004.10.002, PII S0888613X04001069, Imprecise Probabilities and Their Applications
    • J. Bernard An introduction to the imprecise Dirichlet model for multinomial data Int. J. Approx. Reason. 39 2005 123 150 (Pubitemid 40467337)
    • (2005) International Journal of Approximate Reasoning , vol.39 , Issue.2-3 , pp. 123-150
    • Bernard, J.-M.1
  • 10
    • 59749098411 scopus 로고    scopus 로고
    • Representation insensitivity in immediate prediction under exchangeability
    • G. de Cooman, E. Miranda, and E. Quaeghebeur Representation insensitivity in immediate prediction under exchangeability Int. J. Approx. Reason. 50 2009 204 216
    • (2009) Int. J. Approx. Reason. , vol.50 , pp. 204-216
    • De Cooman, G.1    Miranda, E.2    Quaeghebeur, E.3
  • 11
    • 0031120921 scopus 로고    scopus 로고
    • An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations
    • PII S0951832096001317
    • F. Coolen An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations Reliab. Eng. Syst. Saf. 56 1997 61 68 (Pubitemid 127391830)
    • (1997) Reliability Engineering and System Safety , vol.56 , Issue.1 , pp. 61-68
    • Coolen, F.P.A.1
  • 12
    • 0037097221 scopus 로고    scopus 로고
    • Implicative analysis for multivariate binary data using an imprecise Dirichlet model
    • J. Bernard Implicative analysis for multivariate binary data using an imprecise Dirichlet model J. Stat. Plan. Inference 105 2002 83 103
    • (2002) J. Stat. Plan. Inference , vol.105 , pp. 83-103
    • Bernard, J.1
  • 14
    • 59749096919 scopus 로고    scopus 로고
    • Learning in games using the imprecise Dirichlet model
    • E. Quaeghebeur, and G. de Cooman Learning in games using the imprecise Dirichlet model Int. J. Approx. Reason. 50 2009 243 256
    • (2009) Int. J. Approx. Reason. , vol.50 , pp. 243-256
    • Quaeghebeur, E.1    De Cooman, G.2
  • 15
    • 59749094186 scopus 로고    scopus 로고
    • Applying the imprecise Dirichlet model in cases with partial observations and dependencies in failure data
    • M. Troffaes, and F. Coolen Applying the imprecise Dirichlet model in cases with partial observations and dependencies in failure data Int. J. Approx. Reason. 50 2009 257 268
    • (2009) Int. J. Approx. Reason. , vol.50 , pp. 257-268
    • Troffaes, M.1    Coolen, F.2
  • 17
    • 62949174202 scopus 로고    scopus 로고
    • Limits of learning about a categorical latent variable under prior near-ignorance
    • A. Piatti, M. Zaffalon, F. Trojani, and M. Hutter Limits of learning about a categorical latent variable under prior near-ignorance Int. J. Approx. Reason. 50 2009 597 611
    • (2009) Int. J. Approx. Reason. , vol.50 , pp. 597-611
    • Piatti, A.1    Zaffalon, M.2    Trojani, F.3    Hutter, M.4
  • 18
    • 84905108266 scopus 로고    scopus 로고
    • A new imprecise score measure for independence
    • Abellán, and S. Moral A new imprecise score measure for independence Intell. Data Anal. 16 2012 1847 1863
    • (2012) Intell. Data Anal. , vol.16 , pp. 1847-1863
    • Abellán1    Moral, S.2
  • 19
    • 59749084289 scopus 로고    scopus 로고
    • A nonparametric predictive alternative to the imprecise Dirichlet model: The case of a known number of categories
    • F. Coolen, and T. Augustin A nonparametric predictive alternative to the imprecise Dirichlet model: The case of a known number of categories Int. J. Approx. Reason. 50 2009 217 230
    • (2009) Int. J. Approx. Reason. , vol.50 , pp. 217-230
    • Coolen, F.1    Augustin, T.2
  • 21
    • 0010358630 scopus 로고    scopus 로고
    • Credal networks
    • F. Cozman Credal networks Artif. Intell. 120 2000 199 233
    • (2000) Artif. Intell. , vol.120 , pp. 199-233
    • Cozman, F.1
  • 22
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: Bagging, boosting, and variants Mach. Learn. 36 1999 105 139
    • (1999) Mach. Learn. , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 23
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • F. Provost, and P. Domingos Tree induction for probability-based ranking Mach. Learn. 52 2003 199 215
    • (2003) Mach. Learn. , vol.52 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 24
    • 0002183088 scopus 로고
    • Reference posterior distributions for Bayesian inference (with discussion)
    • J. Bernardo Reference posterior distributions for Bayesian inference (with discussion) J. R. Stat. Soc. B 41 1979 113 147
    • (1979) J. R. Stat. Soc. B , vol.41 , pp. 113-147
    • Bernardo, J.1
  • 25
    • 0031510558 scopus 로고    scopus 로고
    • A characterization of the Dirichlet distribution through global and local parameter independence
    • D. Geiger, and D. Heckerman A characterization of the Dirichlet distribution through global and local parameter independence Ann. Stat. 3 1997 1344 1369
    • (1997) Ann. Stat. , vol.3 , pp. 1344-1369
    • Geiger, D.1    Heckerman, D.2
  • 27
    • 59749093102 scopus 로고    scopus 로고
    • The imprecise Dirichlet model
    • J. Bernard The imprecise Dirichlet model Int. J. Approx. Reason. 50 2009 201 203
    • (2009) Int. J. Approx. Reason. , vol.50 , pp. 201-203
    • Bernard, J.1
  • 28
    • 59749093102 scopus 로고    scopus 로고
    • Int. J. Approx. Reason. (special section)
    • J.M. Bernard The Imprecise Dirichlet Model Int. J. Approx. Reason. 50 2009 201 268 (special section)
    • (2009) The Imprecise Dirichlet Model , vol.50 , pp. 201-268
    • Bernard, J.M.1
  • 30
    • 84875222001 scopus 로고    scopus 로고
    • Locally averaged Bayesian Dirichlet metrics for learning the structure and the parameters of Bayesian networks
    • 10.1016/j.ijar.2012.09.003
    • A. Cano, M. Gómez-Olmedo, A. Masegosa, and S. Moral Locally averaged Bayesian Dirichlet metrics for learning the structure and the parameters of Bayesian networks Int. J. Approx. Reason. 54 2013 526 540 10.1016/j.ijar.2012.09.003
    • (2013) Int. J. Approx. Reason. , vol.54 , pp. 526-540
    • Cano, A.1    Gómez-Olmedo, M.2    Masegosa, A.3    Moral, S.4
  • 31
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering Learning Bayesian networks: The combination of knowledge and statistical data Mach. Learn. 20 1995 197 243
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 32
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper, and E. Herskovits A Bayesian method for the induction of probabilistic networks from data Mach. Learn. 9 1992 309 347
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 33
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
    • S. Acid, and L. de Campos Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs Mach. Learn. 59 2005 213 235 (Pubitemid 40890478)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castellano, J.G.3
  • 34
    • 79960558693 scopus 로고    scopus 로고
    • Epistemic irrelevance in credal nets: The case of imprecise Markov trees
    • G. de Cooman, F. Hermans, A. Antonucci, and M. Zaffalon Epistemic irrelevance in credal nets: The case of imprecise Markov trees Int. J. Approx. Reason. 51 2010 1029 1052
    • (2010) Int. J. Approx. Reason. , vol.51 , pp. 1029-1052
    • De Cooman, G.1    Hermans, F.2    Antonucci, A.3    Zaffalon, M.4
  • 40
    • 9444248216 scopus 로고    scopus 로고
    • A Skeleton-Based Approach to Learning Bayesian Networks from Data
    • Knowledge Discovery in Databases: PKDD 2003
    • S. van Dijk, L. can der Gaag, and D. Thierens A skeleton-based approach to learning Bayesian networks from data N. Lavrač, D. Gamberger, L. Todorovski, H. Blockeel, Proceedings of the Seventh Conference on Principles and Practice of Knowledge Discovery in Databases 2003 Springer-Verlag 132 143 (Pubitemid 37231091)
    • (2003) Lecture Notes in Computer Science , Issue.2838 , pp. 132-143
    • Van Dijk, S.1    Van Der Gaag, L.C.2    Thierens, D.3
  • 41
    • 84879604709 scopus 로고    scopus 로고
    • New skeleton-based approaches for Bayesian structure learning of Bayesian networks
    • A. Masegosa, and S. Moral New skeleton-based approaches for Bayesian structure learning of Bayesian networks Appl. Soft Comput. 13 2013 1110 1120
    • (2013) Appl. Soft Comput. , vol.13 , pp. 1110-1120
    • Masegosa, A.1    Moral, S.2
  • 43
    • 53149147744 scopus 로고    scopus 로고
    • Decision-theoretic specification of credal networks: A unified language for uncertain modeling with sets of Bayesian networks
    • A. Antonucci, and M. Zaffalon Decision-theoretic specification of credal networks: a unified language for uncertain modeling with sets of Bayesian networks Int. J. Approx. Reason. 49 2008 345 361
    • (2008) Int. J. Approx. Reason. , vol.49 , pp. 345-361
    • Antonucci, A.1    Zaffalon, M.2
  • 44
    • 33846426145 scopus 로고    scopus 로고
    • Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks
    • DOI 10.1016/j.ijar.2006.07.020, PII S0888613X06000971
    • A. Cano, M. Gómez-Olmedo, S. Moral, and J. Abellán Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks Int. J. Approx. Reason. 44 2007 261 280 (Pubitemid 46149240)
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.3 , pp. 261-280
    • Cano, A.1    Gomez, M.2    Moral, S.3    Abellan, J.4
  • 46
    • 44649172521 scopus 로고    scopus 로고
    • Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2
    • G. Corani, and M. Zaffalon Learning reliable classifiers from small or incomplete data sets: the naive credal classifier 2 J. Mach. Learn. Res. 9 2008 581 621
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 581-621
    • Corani, G.1    Zaffalon, M.2
  • 49
    • 56049127187 scopus 로고    scopus 로고
    • Credal model averaging: An extension of Bayesian model averaging to imprecise probabilities
    • Springer
    • G. Corani, and M. Zaffalon Credal model averaging: An extension of Bayesian model averaging to imprecise probabilities Machine Learning and Knowledge Discovery in Databases 2008 Springer 257 271
    • (2008) Machine Learning and Knowledge Discovery in Databases , pp. 257-271
    • Corani, G.1    Zaffalon, M.2
  • 50
    • 84866049873 scopus 로고    scopus 로고
    • Evaluating credal classifiers by utility-discounted predictive accuracy
    • 10.1016/j.ijar.2012.06.022
    • M. Zaffalon, G. Corani, and D. Mauá Evaluating credal classifiers by utility-discounted predictive accuracy Int. J. Approx. Reason. 53 8 2012 1282 1301 10.1016/j.ijar.2012.06.022
    • (2012) Int. J. Approx. Reason. , vol.53 , Issue.8 , pp. 1282-1301
    • Zaffalon, M.1    Corani, G.2    Mauá, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.