메뉴 건너뛰기




Volumn 54, Issue 4, 2013, Pages 526-540

Locally averaged Bayesian Dirichlet metrics for learning the structure and the parameters of Bayesian networks

Author keywords

Bayesian metrics; Bayesian networks; Parameter estimation; Probabilistic graphical models; Structure learning

Indexed keywords

BAYESIAN; LEARNING BAYESIAN NETWORKS; MARGINAL LIKELIHOOD; OPTIMUM SELECTION; PROBABILISTIC GRAPHICAL MODELS; ROBUST PERFORMANCE; STRUCTURE-LEARNING; THEORETICAL AND EXPERIMENTAL;

EID: 84875222001     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2012.09.003     Document Type: Conference Paper
Times cited : (18)

References (26)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Transactions on Automatic Control 19 6 1974 716 723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 5
    • 69249182056 scopus 로고    scopus 로고
    • Objective Bayesian model selection in Gaussian graphical models
    • C.M. Carvalho, and J.G. Scott Objective Bayesian model selection in Gaussian graphical models Biometrika 96 3 2009 497 512
    • (2009) Biometrika , vol.96 , Issue.3 , pp. 497-512
    • Carvalho, C.M.1    Scott, J.G.2
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper, and E. Herskovits A Bayesian method for the induction of probabilistic networks from data Machine Learning 9 1992 309 347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 7
    • 33847655921 scopus 로고    scopus 로고
    • The Minimum Description Length Principle
    • The MIT Press
    • P.D. Grünwald The Minimum Description Length Principle MIT Press Books vol. 1 2007 The MIT Press
    • (2007) MIT Press Books , vol.1
    • Grünwald, P.D.1
  • 8
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering Learning Bayesian networks: the combination of knowledge and statistical data Machine Learning 20 3 1995 197 243
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 17
    • 0000120766 scopus 로고
    • Estimating dimension of a model
    • G. Schwarz Estimating dimension of a model Annals of Statistics 6 2 1978 461 464
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 21
    • 70349888140 scopus 로고    scopus 로고
    • Learning the Bayesian network structure: Dirichlet prior vs data
    • D.A. McAllester, P. Myllymäki, AUAI Press
    • H. Steck Learning the Bayesian network structure: Dirichlet prior vs data D.A. McAllester, P. Myllymäki, UAI 2008 AUAI Press 511 518
    • (2008) UAI , pp. 511-518
    • Steck, H.1
  • 22
    • 85156264409 scopus 로고    scopus 로고
    • On the Dirichlet prior and Bayesian regularization
    • S. Becker, S. Thrun, K. Obermayer, MIT Press
    • H. Steck, and T. Jaakkola On the Dirichlet prior and Bayesian regularization S. Becker, S. Thrun, K. Obermayer, NIPS 2002 MIT Press 697 704
    • (2002) NIPS , pp. 697-704
    • Steck, H.1    Jaakkola, T.2
  • 24
    • 79954425576 scopus 로고    scopus 로고
    • On open questions in the geometric approach to structural learning Bayesian nets
    • M. Studený, and J. Vomlel On open questions in the geometric approach to structural learning Bayesian nets International Journal of Approximate Reasoning 52 5 2011 627 640
    • (2011) International Journal of Approximate Reasoning , vol.52 , Issue.5 , pp. 627-640
    • Studený, M.1    Vomlel, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.