메뉴 건너뛰기




Volumn 38, Issue 15-16, 2014, Pages 3695-3705

Numerical simulation for the three-dimension fractional sub-diffusion equation

Author keywords

Convergence; Fractional alternating direction implicit scheme; Stability; Three dimensional fractional sub diffusion equation

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; NUMERICAL MODELS;

EID: 84904793753     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2014.03.031     Document Type: Article
Times cited : (33)

References (28)
  • 1
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 3
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • Schneider W., Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30:134-144.
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.1    Wyss, W.2
  • 4
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusion-wave equation
    • Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
    • (1996) Appl. Math. Lett. , vol.9 , pp. 23-28
    • Mainardi, F.1
  • 5
    • 0001859930 scopus 로고    scopus 로고
    • Mapping between solutions of fractional diffusion-wave equations
    • Gorenflo R., Iskenderov A., Luchko Y. Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Math. 2000, 3:75-86.
    • (2000) Fract. Calc. Appl. Math. , vol.3 , pp. 75-86
    • Gorenflo, R.1    Iskenderov, A.2    Luchko, Y.3
  • 6
    • 0035538580 scopus 로고    scopus 로고
    • Spectral analysis of fractional kinetic equations with random data
    • Anh V., Leonenko N. Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 2001, 104:1349-1387.
    • (2001) J. Stat. Phys. , vol.104 , pp. 1349-1387
    • Anh, V.1    Leonenko, N.2
  • 7
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • Agrawal O. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 2002, 29:145-155.
    • (2002) Nonlinear Dyn. , vol.29 , pp. 145-155
    • Agrawal, O.1
  • 8
    • 33747286487 scopus 로고    scopus 로고
    • The time fractional diffusion and advection-dispersion equation
    • Huang F., Liu F. The time fractional diffusion and advection-dispersion equation. ANZIAM J. 2005, 46:317-330.
    • (2005) ANZIAM J. , vol.46 , pp. 317-330
    • Huang, F.1    Liu, F.2
  • 9
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
    • Yuste S., Acedo L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.1    Acedo, L.2
  • 10
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • Yuste S. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.1
  • 11
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Sun Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.1    Wu, X.2
  • 12
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier analysis method for the fractional diffusion equation describing sub-diffusion
    • Chen C., Liu F., Turner I., Anh V. A Fourier analysis method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 13
    • 36149001762 scopus 로고    scopus 로고
    • Numerical algorithm for the time fractional Fokker-Planck equation
    • Deng W. Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 2007, 227:1510-1522.
    • (2007) J. Comput. Phys. , vol.227 , pp. 1510-1522
    • Deng, W.1
  • 14
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • Deng W. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.1
  • 15
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 16
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 17
    • 70350134071 scopus 로고    scopus 로고
    • Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
    • Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:6445-6467.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 6445-6467
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 18
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 19
    • 84907893973 scopus 로고    scopus 로고
    • Numerical method for the variable-order fractional advection - diffusion equation with a nonlinear source term
    • Zhuang P., Liu F., Anh V., Turner I. Numerical method for the variable-order fractional advection - diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 20
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation
    • Chen C., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 1740-1760
    • Chen, C.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 21
    • 78649334165 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional sub-diffusion equations
    • Gao G., Sun Z. A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.1    Sun, Z.2
  • 22
    • 34548553258 scopus 로고    scopus 로고
    • Implicit difference approximation for the two-dimensional space-time fractional diffusion equation
    • Zhuang P., Liu F. Implicit difference approximation for the two-dimensional space-time fractional diffusion equation. J. Appl. Math. Comput. 2007, 25:269-282.
    • (2007) J. Appl. Math. Comput. , vol.25 , pp. 269-282
    • Zhuang, P.1    Liu, F.2
  • 23
    • 80053638646 scopus 로고    scopus 로고
    • Finite difference approximation for two-dimensional time fractional diffusion equation
    • Zhuang P., Liu F. Finite difference approximation for two-dimensional time fractional diffusion equation. J. Algorithms Comput. Technol. 2007, 1(1):1-15.
    • (2007) J. Algorithms Comput. Technol. , vol.1 , Issue.1 , pp. 1-15
    • Zhuang, P.1    Liu, F.2
  • 24
    • 79251616666 scopus 로고    scopus 로고
    • An implicit RBF meshless approach for time fractional diffusion equations
    • Liu Q., Gu Y., Zhuang P., Liu F., Nie Y. An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 2001, 48(1):1-12.
    • (2001) Comput. Mech. , vol.48 , Issue.1 , pp. 1-12
    • Liu, Q.1    Gu, Y.2    Zhuang, P.3    Liu, F.4    Nie, Y.5
  • 25
    • 77950690888 scopus 로고    scopus 로고
    • Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
    • Chen C., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 2010, 54:1-21.
    • (2010) Numer. Algorithms , vol.54 , pp. 1-21
    • Chen, C.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 26
    • 80053633596 scopus 로고    scopus 로고
    • Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
    • Zhang Y., Sun Z. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 2011, 230:8713-8728.
    • (2011) J. Comput. Phys. , vol.230 , pp. 8713-8728
    • Zhang, Y.1    Sun, Z.2
  • 27
    • 79956124918 scopus 로고    scopus 로고
    • A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions
    • Zhao X., Sun Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 2011, 230:6061-6074.
    • (2011) J. Comput. Phys. , vol.230 , pp. 6061-6074
    • Zhao, X.1    Sun, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.