-
1
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
3
-
-
0001553919
-
Fractional diffusion and wave equations
-
Schneider W., Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30:134-144.
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.1
Wyss, W.2
-
4
-
-
30244460855
-
The fundamental solutions for the fractional diffusion-wave equation
-
Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
-
(1996)
Appl. Math. Lett.
, vol.9
, pp. 23-28
-
-
Mainardi, F.1
-
6
-
-
0035538580
-
Spectral analysis of fractional kinetic equations with random data
-
Anh V., Leonenko N. Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 2001, 104:1349-1387.
-
(2001)
J. Stat. Phys.
, vol.104
, pp. 1349-1387
-
-
Anh, V.1
Leonenko, N.2
-
7
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a bounded domain
-
Agrawal O. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 2002, 29:145-155.
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 145-155
-
-
Agrawal, O.1
-
8
-
-
33747286487
-
The time fractional diffusion and advection-dispersion equation
-
Huang F., Liu F. The time fractional diffusion and advection-dispersion equation. ANZIAM J. 2005, 46:317-330.
-
(2005)
ANZIAM J.
, vol.46
, pp. 317-330
-
-
Huang, F.1
Liu, F.2
-
9
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
Yuste S., Acedo L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42:1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.1
Acedo, L.2
-
10
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste S. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.1
-
11
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56:193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.1
Wu, X.2
-
12
-
-
36149001420
-
A Fourier analysis method for the fractional diffusion equation describing sub-diffusion
-
Chen C., Liu F., Turner I., Anh V. A Fourier analysis method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227:886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
13
-
-
36149001762
-
Numerical algorithm for the time fractional Fokker-Planck equation
-
Deng W. Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 2007, 227:1510-1522.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 1510-1522
-
-
Deng, W.1
-
14
-
-
59349113701
-
Finite element method for the space and time fractional Fokker-Planck equation
-
Deng W. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 2008, 47:204-226.
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 204-226
-
-
Deng, W.1
-
15
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
Li X., Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47:2108-2131.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
16
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46:1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
17
-
-
70350134071
-
Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process
-
Zhuang P., Liu F., Anh V., Turner I. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J. Appl. Math. 2009, 74:6445-6467.
-
(2009)
IMA J. Appl. Math.
, vol.74
, pp. 6445-6467
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
18
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
19
-
-
84907893973
-
Numerical method for the variable-order fractional advection - diffusion equation with a nonlinear source term
-
Zhuang P., Liu F., Anh V., Turner I. Numerical method for the variable-order fractional advection - diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47:1760-1781.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
20
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation
-
Chen C., Liu F., Anh V., Turner I. Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation. SIAM J. Sci. Comput. 2010, 32:1740-1760.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1740-1760
-
-
Chen, C.1
Liu, F.2
Anh, V.3
Turner, I.4
-
21
-
-
78649334165
-
A compact difference scheme for the fractional sub-diffusion equations
-
Gao G., Sun Z. A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 586-595
-
-
Gao, G.1
Sun, Z.2
-
22
-
-
34548553258
-
Implicit difference approximation for the two-dimensional space-time fractional diffusion equation
-
Zhuang P., Liu F. Implicit difference approximation for the two-dimensional space-time fractional diffusion equation. J. Appl. Math. Comput. 2007, 25:269-282.
-
(2007)
J. Appl. Math. Comput.
, vol.25
, pp. 269-282
-
-
Zhuang, P.1
Liu, F.2
-
23
-
-
80053638646
-
Finite difference approximation for two-dimensional time fractional diffusion equation
-
Zhuang P., Liu F. Finite difference approximation for two-dimensional time fractional diffusion equation. J. Algorithms Comput. Technol. 2007, 1(1):1-15.
-
(2007)
J. Algorithms Comput. Technol.
, vol.1
, Issue.1
, pp. 1-15
-
-
Zhuang, P.1
Liu, F.2
-
24
-
-
79251616666
-
An implicit RBF meshless approach for time fractional diffusion equations
-
Liu Q., Gu Y., Zhuang P., Liu F., Nie Y. An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 2001, 48(1):1-12.
-
(2001)
Comput. Mech.
, vol.48
, Issue.1
, pp. 1-12
-
-
Liu, Q.1
Gu, Y.2
Zhuang, P.3
Liu, F.4
Nie, Y.5
-
25
-
-
77950690888
-
Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation
-
Chen C., Liu F., Turner I., Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 2010, 54:1-21.
-
(2010)
Numer. Algorithms
, vol.54
, pp. 1-21
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
26
-
-
80053633596
-
Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
-
Zhang Y., Sun Z. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 2011, 230:8713-8728.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 8713-8728
-
-
Zhang, Y.1
Sun, Z.2
-
27
-
-
79956124918
-
A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions
-
Zhao X., Sun Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 2011, 230:6061-6074.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 6061-6074
-
-
Zhao, X.1
Sun, Z.2
|