메뉴 건너뛰기




Volumn 28, Issue 8, 2014, Pages 831-839

H-DROP: An SVM based helical domain linker predictor trained with features optimized by combining random forest and stepwise selection

Author keywords

Domain boundary prediction; Feature selection; Helical linker; Machine learning; Random forest; Stepwise selection; Structural domain; Support vector machine

Indexed keywords

DECISION TREES; FEATURE SELECTION; MOLECULAR BIOLOGY; SUPPORT VECTOR MACHINES;

EID: 84904761886     PISSN: 0920654X     EISSN: 15734951     Source Type: Journal    
DOI: 10.1007/s10822-014-9763-x     Document Type: Article
Times cited : (5)

References (34)
  • 24
    • 0033578684 scopus 로고    scopus 로고
    • Jones DT (1999) J Mol Biol 292(2):195-202
    • (1999) J Mol Biol , vol.292 , Issue.2 , pp. 195-202
    • Jones, D.T.1
  • 32
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B, Burges C, Smola A (eds) MIT, Cambridge
    • Joachims T (1999) Making large-scale SVM learning practical. In: Schölkopf B, Burges C, Smola A (eds) Advances in Kernel methods: support vector learning. MIT, Cambridge
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.