-
1
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
10.1126/science.1102896 10.1126/science.1102896
-
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666-669. doi: 10.1126/science.1102896
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
2
-
-
23044442056
-
Two-dimensional atomic crystals
-
10.1073/pnas.0502848102 10.1073/pnas.0502848102
-
Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451-10453. doi: 10.1073/pnas.0502848102
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 10451-10453
-
-
Novoselov, K.S.1
Jiang, D.2
Schedin, F.3
Booth, T.J.4
Khotkevich, V.V.5
Morozov, S.V.6
Geim, A.K.7
-
3
-
-
84876539655
-
Progress, challenges, and opportunities in two-dimensional materials beyond graphene
-
10.1021/nn400280c 10.1021/nn400280c
-
Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898-2926. doi: 10.1021/nn400280c
-
(2013)
ACS Nano
, vol.7
, pp. 2898-2926
-
-
Butler, S.Z.1
Hollen, S.M.2
Cao, L.3
Cui, Y.4
Gupta, J.A.5
Gutiérrez, H.R.6
Heinz, T.F.7
Hong, S.S.8
Huang, J.9
Ismach, A.F.10
Johnston-Halperin, E.11
Kuno, M.12
Plashnitsa, V.V.13
Robinson, R.D.14
Ruoff, R.S.15
Salahuddin, S.16
Shan, J.17
Shi, L.18
Spencer, M.G.19
Terrones, M.20
Windl, W.21
Goldberger, J.E.22
more..
-
6
-
-
84869074729
-
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
-
10.1038/nnano.2012.193 10.1038/nnano.2012.193
-
Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech 7:699-712. doi: 10.1038/nnano.2012.193
-
(2012)
Nat Nanotech
, vol.7
, pp. 699-712
-
-
Wang, Q.H.1
Kalantar-Zadeh, K.2
Kis, A.3
Coleman, J.N.4
Strano, M.S.5
-
7
-
-
84856170872
-
2 Phototransistors
-
10.1021/nn2024557 10.1021/nn2024557
-
2 Phototransistors. ACS Nano 6:74-80. doi: 10.1021/nn2024557
-
(2011)
ACS Nano
, vol.6
, pp. 74-80
-
-
Yin, Z.1
Li, H.2
Li, H.3
Jiang, L.4
Shi, Y.5
Sun, Y.6
Lu, G.7
Zhang, Q.8
Chen, X.9
Zhang, H.10
-
11
-
-
0002060281
-
Physics of solids under strong compression
-
10.1088/0034-4885/59/1/002 10.1088/0034-4885/59/1/002
-
Holzapfel WB (1996) Physics of solids under strong compression. Rep Prog Phys 59:29. doi: 10.1088/0034-4885/59/1/002
-
(1996)
Rep Prog Phys
, vol.59
, pp. 29
-
-
Holzapfel, W.B.1
-
12
-
-
0020101853
-
Strained-layer superlattices from lattice mismatched materials
-
10.1063/1.330615 10.1063/1.330615
-
Osbourn GC (1982) Strained-layer superlattices from lattice mismatched materials. J Appl Phys 53:1586-1589. doi: 10.1063/1.330615
-
(1982)
J Appl Phys
, vol.53
, pp. 1586-1589
-
-
Osbourn, G.C.1
-
13
-
-
58049208431
-
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
-
10.1021/nn800459e 10.1021/nn800459e
-
Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2:2301-2305. doi: 10.1021/nn800459e
-
(2008)
ACS Nano
, vol.2
, pp. 2301-2305
-
-
Ni, Z.H.1
Yu, T.2
Lu, Y.H.3
Wang, Y.Y.4
Feng, Y.P.5
Shen, Z.X.6
-
14
-
-
68649099010
-
Strain engineering of graphene's electronic structure
-
10.1103/PhysRevLett.103.046801 10.1103/PhysRevLett.103.046801
-
Pereira VM, Castro Neto AH (2009) Strain engineering of graphene's electronic structure. Phys Rev Lett 103:046801. doi: 10.1103/PhysRevLett.103. 046801
-
(2009)
Phys Rev Lett
, vol.103
, pp. 046801
-
-
Pereira, V.M.1
Castro Neto, A.H.2
-
15
-
-
77956429165
-
Stretchable graphene: A close look at fundamental parameters through biaxial straining
-
10.1021/nl101533x 10.1021/nl101533x
-
Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A, Schmidt OG (2010) stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett 10:3453-3458. doi: 10.1021/nl101533x
-
(2010)
Nano Lett
, vol.10
, pp. 3453-3458
-
-
Ding, F.1
Ji, H.2
Chen, Y.3
Herklotz, A.4
Dörr, K.5
Mei, Y.6
Rastelli, A.7
Schmidt, O.G.8
-
16
-
-
84870827144
-
Biaxial compressive strain engineering in graphene/boron nitride heterostructures
-
10.1038/srep00893
-
Pan W, Xiao J, Zhu J, Yu C, Zhang G, Ni Z, Watanabe K, Taniguchi T, Shi Y, Wang X (2012) Biaxial compressive strain engineering in graphene/boron nitride heterostructures. Sci Rep 2:893. doi: 10.1038/srep00893
-
(2012)
Sci Rep
, vol.2
, pp. 893
-
-
Pan, W.1
Xiao, J.2
Zhu, J.3
Yu, C.4
Zhang, G.5
Ni, Z.6
Watanabe, K.7
Taniguchi, T.8
Shi, Y.9
Wang, X.10
-
17
-
-
84879076657
-
Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2
-
10.1021/nl4013166 10.1021/nl4013166
-
He K, Poole C, Mak KF, Shan J (2013) Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 13:2931-2936. doi: 10.1021/nl4013166
-
(2013)
Nano Lett
, vol.13
, pp. 2931-2936
-
-
He, K.1
Poole, C.2
Mak, K.F.3
Shan, J.4
-
18
-
-
84881590746
-
Bandgap engineering of strained monolayer and bilayer MoS2
-
10.1021/nl4014748 10.1021/nl4014748
-
Conley HJ, Wang B, Ziegler JI, Haglund RF, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13:3626-3630. doi: 10.1021/nl4014748
-
(2013)
Nano Lett
, vol.13
, pp. 3626-3630
-
-
Conley, H.J.1
Wang, B.2
Ziegler, J.I.3
Haglund, R.F.4
Pantelides, S.T.5
Bolotin, K.I.6
-
19
-
-
84555197340
-
Stretching and breaking of ultrathin MoS2
-
10.1021/nn203879f 10.1021/nn203879f
-
Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5:9703-9709. doi: 10.1021/nn203879f
-
(2011)
ACS Nano
, vol.5
, pp. 9703-9709
-
-
Bertolazzi, S.1
Brivio, J.2
Kis, A.3
-
20
-
-
84862893246
-
Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains
-
10.1021/nn301320r 10.1021/nn301320r
-
Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6:5449-5456. doi: 10.1021/nn301320r
-
(2012)
ACS Nano
, vol.6
, pp. 5449-5456
-
-
Johari, P.1
Shenoy, V.B.2
-
23
-
-
84863011344
-
2 semiconductors (M = Mo, W; X = S, Se, Te)
-
10.1103/PhysRevB.85.033305 10.1103/PhysRevB.85.033305
-
2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B 85:033305. doi: 10.1103/PhysRevB.85.033305
-
(2012)
Phys Rev B
, vol.85
, pp. 033305
-
-
Yun, W.S.1
Han, S.W.2
Hong, S.C.3
Kim, I.G.4
Lee, J.D.5
-
24
-
-
84862823380
-
Mechanical and electronic properties of monolayer MoS2 under elastic strain
-
10.1016/j.physleta.2012.02.029 10.1016/j.physleta.2012.02.029
-
Yue Q, Kang J, Shao Z, Zhang X, Chang S, Wang G, Qin S, Li J (2012) Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys Lett A 376:1166-1170. doi: 10.1016/j.physleta.2012.02.029
-
(2012)
Phys Lett A
, vol.376
, pp. 1166-1170
-
-
Yue, Q.1
Kang, J.2
Shao, Z.3
Zhang, X.4
Chang, S.5
Wang, G.6
Qin, S.7
Li, J.8
-
26
-
-
25744460922
-
Projector augmented-wave method
-
10.1103/PhysRevB.50.17953 10.1103/PhysRevB.50.17953
-
Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. doi: 10.1103/PhysRevB.50.17953
-
(1994)
Phys Rev B
, vol.50
, pp. 17953
-
-
Blochl, P.E.1
-
27
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
10.1103/PhysRevB.54.11169 10.1103/PhysRevB.54.11169
-
Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. doi: 10.1103/PhysRevB.54.11169
-
(1996)
Phys Rev B
, vol.54
, pp. 11169
-
-
Kresse, G.1
Furthmüller, J.2
-
28
-
-
4243943295
-
Generalized gradient approximation made simple
-
10.1103/PhysRevLett.77.3865 10.1103/PhysRevLett.77.3865
-
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865-3868. doi: 10.1103/PhysRevLett.77.3865
-
(1996)
Phys Rev Lett
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
29
-
-
4243209020
-
Density-functional theory of the energy gap
-
10.1103/PhysRevLett.51.1888 10.1103/PhysRevLett.51.1888
-
Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888-1891. doi: 10.1103/PhysRevLett.51.1888
-
(1983)
Phys Rev Lett
, vol.51
, pp. 1888-1891
-
-
Sham, L.J.1
Schlüter, M.2
-
30
-
-
0037799714
-
Hybrid functionals based on a screened Coulomb potential
-
10.1063/1.1564060 10.1063/1.1564060
-
Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207-8215. doi: 10.1063/1.1564060
-
(2003)
J Chem Phys
, vol.118
, pp. 8207-8215
-
-
Heyd, J.1
Scuseria, G.E.2
Ernzerhof, M.3
-
31
-
-
34548736472
-
Quasiparticle band structure based on a generalized Kohn-Sham scheme
-
10.1103/PhysRevB.76.115109 10.1103/PhysRevB.76.115109
-
Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G (2007) Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys Rev B 76:115109. doi: 10.1103/PhysRevB.76.115109
-
(2007)
Phys Rev B
, vol.76
, pp. 115109
-
-
Fuchs, F.1
Furthmüller, J.2
Bechstedt, F.3
Shishkin, M.4
Kresse, G.5
-
32
-
-
50149093649
-
Ab-initio simulations of materials using VASP: Density-functional theory and beyond
-
10.1002/jcc.21057 10.1002/jcc.21057
-
Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29:2044-2078. doi: 10.1002/jcc.21057
-
(2008)
J Comput Chem
, vol.29
, pp. 2044-2078
-
-
Hafner, J.1
-
33
-
-
84855701869
-
2 as predicted by screened hybrid density functional theory
-
10.1063/1.3672219 10.1063/1.3672219
-
2 as predicted by screened hybrid density functional theory. Appl Phys Lett 99:261908. doi: 10.1063/1.3672219
-
(2011)
Appl Phys Lett
, vol.99
, pp. 261908
-
-
Ellis, J.K.1
Lucero, M.J.2
Scuseria, G.E.3
-
36
-
-
4243380685
-
2: Angle-resolved photoelectron spectroscopy and ab initio calculations
-
10.1103/PhysRevB.64.235305 10.1103/PhysRevB.64.235305
-
2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys Rev B 64:235305. doi: 10.1103/PhysRevB.64.235305
-
(2001)
Phys Rev B
, vol.64
, pp. 235305
-
-
Böker, T.1
Severin, R.2
Müller, A.3
Janowitz, C.4
Manzke, R.5
Voß, D.6
Krüger, P.7
Mazur, A.8
Pollmann, J.9
-
37
-
-
84865792991
-
2 monolayer, bilayer, nanoribbons and nanotubes
-
10.1039/c2cp42181j 10.1039/c2cp42181j
-
2 monolayer, bilayer, nanoribbons and nanotubes. Phys Chem Chem Phys 14:13035-13040. doi: 10.1039/c2cp42181j
-
(2012)
Phys Chem Chem Phys
, vol.14
, pp. 13035-13040
-
-
Lu, P.1
Wu, X.2
Guo, W.3
Zeng, X.C.4
-
39
-
-
57549105653
-
2 Nanoribbons: High stability and unusual electronic and magnetic properties
-
10.1021/ja805545x 10.1021/ja805545x
-
2 Nanoribbons: high stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739-16744. doi: 10.1021/ja805545x
-
(2008)
J Am Chem Soc
, vol.130
, pp. 16739-16744
-
-
Li, Y.1
Zhou, Z.2
Zhang, S.3
Chen, Z.4
-
40
-
-
84858991798
-
2 nanoribbons
-
10.1039/c2jm15906f 10.1039/c2jm15906f
-
2 nanoribbons. J Mater Chem 22:7280-7290. doi: 10.1039/c2jm15906f
-
(2012)
J Mater Chem
, vol.22
, pp. 7280-7290
-
-
Pan, H.1
Zhang, Y.-W.2
|