메뉴 건너뛰기




Volumn , Issue , 2014, Pages 667-676

Does product recommendation meet its Waterloo in unexplored categories? No, price comes to help

Author keywords

Price; Product recommendation; Unexplored category

Indexed keywords

DROPS; ELECTRONIC COMMERCE; INFORMATION RETRIEVAL; RESEARCH;

EID: 84904543893     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2600428.2609608     Document Type: Conference Paper
Times cited : (21)

References (20)
  • 1
    • 84874261331 scopus 로고    scopus 로고
    • Latent factor models with additive and hierarchically-smoothed user preferences
    • A. Ahmed, B. Kanagal, S. Pandey, V. Josifovski, L. G. Pueyo, and J. Yuan. Latent factor models with additive and hierarchically-smoothed user preferences. In WSDM, pages 385-394, 2013.
    • (2013) WSDM , pp. 385-394
    • Ahmed, A.1    Kanagal, B.2    Pandey, S.3    Josifovski, V.4    Pueyo, L.G.5    Yuan, J.6
  • 2
    • 84961648876 scopus 로고    scopus 로고
    • Buying or browsing?: An exploration of shopping orientations and online purchase intention
    • M. Brown, N. Pope, and K. Voges. Buying or browsing?: An exploration of shopping orientations and online purchase intention. European Journal of Marketing, 37(11/12):1666-1684, 2003.
    • (2003) European Journal of Marketing , vol.37 , Issue.11-12 , pp. 1666-1684
    • Brown, M.1    Pope, N.2    Voges, K.3
  • 3
    • 84863231708 scopus 로고    scopus 로고
    • The impact of comments and recommendation system on online shopper buying behaviour
    • H. Chen. The impact of comments and recommendation system on online shopper buying behaviour. JNW, 7(2):345-350, 2012.
    • (2012) JNW , vol.7 , Issue.2 , pp. 345-350
    • Chen, H.1
  • 4
    • 84897495349 scopus 로고    scopus 로고
    • General functional matrix factorization using gradient boosting
    • T. Chen, H. Li, Q. Yang, and Y. Yu. General functional matrix factorization using gradient boosting. In ICML, pages 436-444, 2013.
    • (2013) ICML , pp. 436-444
    • Chen, T.1    Li, H.2    Yang, Q.3    Yu, Y.4
  • 5
    • 67649933906 scopus 로고    scopus 로고
    • Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity
    • D. M. Fleder and K. Hosanagar. Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity. Management Science, 55(5):697-712, 2009.
    • (2009) Management Science , vol.55 , Issue.5 , pp. 697-712
    • Fleder, D.M.1    Hosanagar, K.2
  • 6
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 7
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
    • (2008) ICDM , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 8
    • 84994171334 scopus 로고    scopus 로고
    • Chris anderson, the long tail: Why the future of business is selling less or more, hyperion, new york (2006) isbn 1-4013-0237-8 24.95
    • B. J. Jansen. Chris anderson, the long tail: Why the future of business is selling less or more, hyperion, new york (2006) isbn 1-4013-0237-8 24.95. Inf. Process. Manage., 43(4):1147-1148, 2007.
    • (2007) Inf. Process. Manage. , vol.43 , Issue.4 , pp. 1147-1148
    • Jansen, B.J.1
  • 10
    • 70350656339 scopus 로고    scopus 로고
    • Tangent: A novel 'surprise me', recommendation algorithm
    • K. Onuma, H. Tong, and C. Faloutsos. Tangent: a novel, 'surprise me', recommendation algorithm. In KDD, pages 657-666, 2009.
    • (2009) KDD , pp. 657-666
    • Onuma, K.1    Tong, H.2    Faloutsos, C.3
  • 11
    • 72249103222 scopus 로고    scopus 로고
    • Pairwise preference regression for cold-start recommendation
    • S.-T. Park and W. Chu. Pairwise preference regression for cold-start recommendation. In RecSys, pages 21-28, 2009.
    • (2009) RecSys , pp. 21-28
    • Park, S.-T.1    Chu, W.2
  • 13
    • 85071783077 scopus 로고    scopus 로고
    • Bayesian matrix factorization with side information and dirichlet process mixtures
    • I. Porteous, A. U. Asuncion, and M. Welling. Bayesian matrix factorization with side information and dirichlet process mixtures. In AAAI, 2010.
    • (2010) AAAI
    • Porteous, I.1    Asuncion, A.U.2    Welling, M.3
  • 15
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In KDD, pages 650-658, 2008.
    • (2008) KDD , pp. 650-658
    • Singh, A.P.1    Gordon, G.J.2
  • 16
    • 80052121603 scopus 로고    scopus 로고
    • Utilizing marginal net utility for recommendation in e-commerce
    • J. Wang and Y. Zhang. Utilizing marginal net utility for recommendation in e-commerce. In SIGIR, pages 1003-1012, 2011.
    • (2011) SIGIR , pp. 1003-1012
    • Wang, J.1    Zhang, Y.2
  • 17
    • 84883126835 scopus 로고    scopus 로고
    • Opportunity model for e-commerce recommendation: Right product; Right time
    • J. Wang and Y. Zhang. Opportunity model for e-commerce recommendation: right product; right time. In SIGIR, pages 303-312, 2013.
    • (2013) SIGIR , pp. 303-312
    • Wang, J.1    Zhang, Y.2
  • 18
    • 82555195650 scopus 로고    scopus 로고
    • Factorization vs. Regularization: Fusing heterogeneous social relationships in top-n recommendation
    • Q. Yuan, L. Chen, and S. Zhao. Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation. In RecSys, pages 245-252, 2011.
    • (2011) RecSys , pp. 245-252
    • Yuan, Q.1    Chen, L.2    Zhao, S.3
  • 19
    • 84866634084 scopus 로고    scopus 로고
    • Increasing temporal diversity with purchase intervals
    • G. Zhao, M.-L. Lee, W. Hsu, and W. Chen. Increasing temporal diversity with purchase intervals. In SIGIR, pages 165-174, 2012.
    • (2012) SIGIR , pp. 165-174
    • Zhao, G.1    Lee, M.-L.2    Hsu, W.3    Chen, W.4
  • 20
    • 33645657113 scopus 로고    scopus 로고
    • Improving recommendation lists through topic diversification
    • C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In WWW, pages 22-32, 2005.
    • (2005) WWW , pp. 22-32
    • Ziegler, C.-N.1    McNee, S.M.2    Konstan, J.A.3    Lausen, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.