메뉴 건너뛰기




Volumn , Issue , 2012, Pages 165-174

Increasing temporal diversity with purchase intervals

Author keywords

e commerce; personalization; purchase intervals; recommender system; temporal diversity; utility theory

Indexed keywords

CONVERSION RATES; CORE TECHNOLOGY; DATA SETS; ECONOMIC BENEFITS; INK CARTRIDGES; MARGINAL UTILITY; ONLINE SHOPPERS; PERSONALIZATIONS; PRODUCT RECOMMENDER SYSTEM; PURCHASE DECISION; PURCHASE INTERVALS; STATE-OF-THE-ART ALGORITHMS; TEMPORAL DIVERSITY; TIME INTERVAL; USER NEED; UTILITY THEORY; WEB 2.0;

EID: 84866634084     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2348283.2348309     Document Type: Conference Paper
Times cited : (51)

References (22)
  • 2
    • 0002051628 scopus 로고    scopus 로고
    • Empirical Analysis of Predictive Algorithms for Collaborative Filtering
    • J.S. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In Microsoft Technical Report, pages 43-52, 2007.
    • (2007) Microsoft Technical Report , pp. 43-52
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 3
    • 0000918990 scopus 로고
    • Latent semantic models for collaborative filtering
    • C. Cobb and P. Douglas. Latent semantic models for collaborative filtering. American Economic Review, 18:139-165, 1928.
    • (1928) American Economic Review , vol.18 , pp. 139-165
    • Cobb, C.1    Douglas, P.2
  • 4
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4:133-151, 2001.
    • (2001) Information Retrieval , vol.4 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 6
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM TOIS, 22:89-115, 2004.
    • (2004) ACM TOIS , vol.22 , pp. 89-115
    • Hofmann, T.1
  • 8
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In ACM SIGKDD, pages 426-434, 2008.
    • (2008) ACM SIGKDD , pp. 426-434
    • Koren, Y.1
  • 10
    • 77956031557 scopus 로고    scopus 로고
    • Temporal diversity in recommender systems
    • N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal diversity in recommender systems. In ACM SIGIR, pages 210-217, 2010.
    • (2010) ACM SIGIR , pp. 210-217
    • Lathia, N.1    Hailes, S.2    Capra, L.3    Amatriain, X.4
  • 11
    • 80055041725 scopus 로고    scopus 로고
    • Towards a theory model for product search
    • B. Li, A. Ghose, and P.G. Ipeirotis. Towards a theory model for product search. In WWW Conference, pages 327-336, 2011.
    • (2011) WWW Conference , pp. 327-336
    • Li, B.1    Ghose, A.2    Ipeirotis, P.G.3
  • 12
    • 8644228708 scopus 로고    scopus 로고
    • A collaborative filtering algorithm and evaluation metric that accurately model the user experience
    • M.R. McLaughlin and J.L. Herlocker. A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In ACM SIGIR, pages 329-336, 2004.
    • (2004) ACM SIGIR , pp. 329-336
    • McLaughlin, M.R.1    Herlocker, J.L.2
  • 14
    • 84867817558 scopus 로고    scopus 로고
    • Collaborative filtering with the simple bayesian classifier
    • K. Miyahara and M.J. Pazzani. Collaborative filtering with the simple bayesian classifier. In PRICAI, pages 679-689, 2000.
    • (2000) PRICAI , pp. 679-689
    • Miyahara, K.1    Pazzani, M.J.2
  • 15
    • 85016684697 scopus 로고    scopus 로고
    • A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains
    • D.Y. Pavlov and D.M. Pennock. A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains. In Neural Information Processing Systems, pages 1441-1448, 2002.
    • (2002) Neural Information Processing Systems , pp. 1441-1448
    • Pavlov, D.Y.1    Pennock, D.M.2
  • 16
    • 77954599758 scopus 로고    scopus 로고
    • Factorizing personalized markov chains for next-basket recommendation
    • S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In WWW Conference, pages 811-820, 2010.
    • (2010) WWW Conference , pp. 811-820
    • Rendle, S.1    Freudenthaler, C.2    Schmidt-Thieme, L.3
  • 17
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In WWW Conference, pages 285-295, 2001.
    • (2001) WWW Conference , pp. 285-295
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Reidl, J.4
  • 18
    • 84958760418 scopus 로고    scopus 로고
    • Rectree: An efficient collaborative filtering method
    • S.H. Seng, S. Chee, J. Han, and K. Wang. Rectree: An efficient collaborative filtering method. In DaWaK, pages 141-151, 2001.
    • (2001) DaWaK , pp. 141-151
    • Seng, S.H.1    Chee, S.2    Han, J.3    Wang, K.4
  • 19
    • 1942516799 scopus 로고    scopus 로고
    • Flexible Mixture Model for Collaborative Filtering
    • L. Si and R. Jin. Flexible Mixture Model for Collaborative Filtering. In ICML, pages 704-711, 2003.
    • (2003) ICML , pp. 704-711
    • Si, L.1    Jin, R.2
  • 20
    • 38949184555 scopus 로고    scopus 로고
    • Collaborative filtering for multi-class data using belief nets algorithms
    • X. Su and T.M. Khoshgoftaar. Collaborative filtering for multi-class data using belief nets algorithms. In IEEE ICTAI, pages 497-504, 2006.
    • (2006) IEEE ICTAI , pp. 497-504
    • Su, X.1    Khoshgoftaar, T.M.2
  • 21
    • 80052121603 scopus 로고    scopus 로고
    • Utilizing marginal net utility for recommendation in e-commerce
    • J. Wang and Y. Zhang. Utilizing marginal net utility for recommendation in e-commerce. In ACM SIGIR, pages 1003-1012, 2011.
    • (2011) ACM SIGIR , pp. 1003-1012
    • Wang, J.1    Zhang, Y.2
  • 22
    • 77956220287 scopus 로고    scopus 로고
    • Temporal recommendation on graphs via long- And short-term preference fusion
    • L. Xiang, Q. Yuan, and S. et. al. Zhao. Temporal recommendation on graphs via long- and short-term preference fusion. In ACM SIGKDD, pages 723-732, 2010.
    • (2010) ACM SIGKDD , pp. 723-732
    • Xiang, L.1    Yuan, Q.2    Zhao, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.