메뉴 건너뛰기




Volumn , Issue , 2013, Pages 385-394

Latent factor models with additive and hierarchically-smoothed user preferences

Author keywords

inference; latent variable models; recomcollaborative filtering; recomfactor models; recommendation

Indexed keywords

ADDITIVE MODELS; BACKWARD-SMOOTHING; BAYESIAN HIERARCHICAL MODEL; COLD START PROBLEMS; COLLABORATIVE FILTERING SYSTEMS; CONTINUOUS ATTRIBUTE; DATA SPARSITY; DISCRETE ATTRIBUTES; EXPERIMENTAL ANALYSIS; FORWARD-FILTERING; INFERENCE; INFERENCE ALGORITHM; LATENT FACTOR MODELS; LATENT VARIABLE MODELS; NEWS ARTICLES; PREFERENCE MODELS; RANDOM EFFECTS; RANKING ALGORITHM; RECOMMENDATION; USER PREFERENCE MODELS;

EID: 84874261331     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2433396.2433445     Document Type: Conference Paper
Times cited : (31)

References (21)
  • 1
    • 84874281212 scopus 로고    scopus 로고
    • Pricegrabber. http://www.pricegrabber.com/.
    • Pricegrabber
  • 2
    • 70350664430 scopus 로고    scopus 로고
    • Regression-based latent factor models
    • D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD, pages 19-28, 2009.
    • (2009) KDD , pp. 19-28
    • Agarwal, D.1    Chen, B.-C.2
  • 4
    • 80052659792 scopus 로고    scopus 로고
    • Scalable distributed inference of dynamic user interests for behavioral targeting
    • A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J. Smola. Scalable distributed inference of dynamic user interests for behavioral targeting. In KDD, pages 114-122, 2011.
    • (2011) KDD , pp. 114-122
    • Ahmed, A.1    Low, Y.2    Aly, M.3    Josifovski, V.4    Smola, A.J.5
  • 6
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • R. D. Burke. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact., 12(4):331-370, 2002.
    • (2002) User Model. User-Adapt. Interact. , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.D.1
  • 8
    • 63449099034 scopus 로고    scopus 로고
    • Tied boltzmann machines for cold start recommendations
    • A. Gunawardana and C. Meek. Tied boltzmann machines for cold start recommendations. In RecSys, pages 19-26, 2008.
    • (2008) RecSys , pp. 19-26
    • Gunawardana, A.1    Meek, C.2
  • 9
    • 72249108954 scopus 로고    scopus 로고
    • A unified approach to building hybrid recommender systems
    • A. Gunawardana and C. Meek. A unified approach to building hybrid recommender systems. In RecSys, pages 117-124, 2009.
    • (2009) RecSys , pp. 117-124
    • Gunawardana, A.1    Meek, C.2
  • 12
    • 82555183093 scopus 로고    scopus 로고
    • Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy
    • N. Koenigstein, G. Dror, and Y. Koren. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In RecSys, 2011.
    • (2011) RecSys
    • Koenigstein, N.1    Dror, G.2    Koren, Y.3
  • 13
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD, pages 426-434, 2008.
    • (2008) KDD , pp. 426-434
    • Koren, Y.1
  • 14
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. In KDD, pages 447-456, 2009.
    • (2009) KDD , pp. 447-456
    • Koren, Y.1
  • 16
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.M.2    Volinsky, C.3
  • 17
    • 84994186040 scopus 로고    scopus 로고
    • Taxonomy-informed latent factor models for implicit feedback
    • A. Mnih. Taxonomy-informed latent factor models for implicit feedback. In KDD Cup, KDD 2011, 2011.
    • (2011) KDD Cup, KDD 2011
    • Mnih, A.1
  • 19
    • 77950902603 scopus 로고    scopus 로고
    • Pairwise interaction tensor factorization for personalized tag recommendation
    • S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In WSDM, 2010.
    • (2010) WSDM
    • Rendle, S.1    Schmidt-Thieme, L.2
  • 21
    • 71149088913 scopus 로고    scopus 로고
    • Large-scale collaborative prediction using a nonparametric random effects model
    • K. Yu, J. D. Lafferty, S. Zhu, and Y. Gong. Large-scale collaborative prediction using a nonparametric random effects model. In ICML, page 149, 2009.
    • (2009) ICML , pp. 149
    • Yu, K.1    Lafferty, J.D.2    Zhu, S.3    Gong, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.