-
1
-
-
84864580131
-
Microfluidics-based assessment of cell deformability
-
A. Adamo, A. Sharei, L. Adamo, B.K. Lee, S. Mao, and K.F. Jensen. Microfluidics-based assessment of cell deformability. Analytical Chemistry, 84(15):6438–6443, 2012.
-
(2012)
Analytical Chemistry
, vol.84
, Issue.15
, pp. 6438-6443
-
-
Adamo, A.1
Sharei, A.2
Adamo, L.3
Lee, B.K.4
Mao, S.5
Jensen, K.F.6
-
3
-
-
84907163633
-
Circulating tumor cell analysis: Technical and statistical considerations for application to the clinic
-
A.L. Allan and M. Keeney. Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. Journal of oncology, 2010, 2009.
-
(2009)
Journal of Oncology
, vol.2010
-
-
Allan, A.L.1
Keeney, M.2
-
4
-
-
0037060168
-
Polymer microfluidic devices
-
H. Becker and L.E. Locascio. Polymer microfluidic devices. Talanta, 56(2): 267–287, 2002.
-
(2002)
Talanta
, vol.56
, Issue.2
, pp. 267-287
-
-
Becker, H.1
Locascio, L.E.2
-
5
-
-
77957818026
-
Mi crofluidics for cell separation
-
A.A.S. Bhagat, H. Bow, H.W. Hou, S.J. Tan, J. Han, and C.T. Lim. Mi crofluidics for cell separation. Medical and Biological Engineering and Computing, 48(10):999–1014, 2010.
-
(2010)
Medical and Biological Engineering and Computing
, vol.48
, Issue.10
, pp. 999-1014
-
-
Bhagat, A.A.S.1
Bow, H.2
Hou, H.W.3
Tan, S.J.4
Han, J.5
Lim, C.T.6
-
6
-
-
79952128472
-
A microfabricated deformability-based flow cytometer with application to malaria
-
H. Bow, I.V. Pivkin, M. Diez-Silva, S.J. Goldfless, M. Dao, J.C. Niles, S. Suresh, and J. Han. A microfabricated deformability-based flow cytometer with application to malaria. Lab on a Chip, 11(6):1065–1073, 2011.
-
(2011)
Lab on a Chip
, vol.11
, Issue.6
, pp. 1065-1073
-
-
Bow, H.1
Pivkin, I.V.2
Diez-Silva, M.3
Goldfless, S.J.4
Dao, M.5
Niles, J.C.6
Suresh, S.7
Han, J.8
-
7
-
-
75749107907
-
Cell mechanics and the cytoskeleton
-
D.A. Fletcher and R.D. Mullins. Cell mechanics and the cytoskeleton. Nature, 463(7280):485–492, 2010.
-
(2010)
Nature
, vol.463
, Issue.7280
, pp. 485-492
-
-
Fletcher, D.A.1
Mullins, R.D.2
-
8
-
-
54349110899
-
Microfluidics for miniaturized laboratories on a chip
-
T.A. Franke and A. Wixforth. Microfluidics for miniaturized laboratories on a chip. ChemPhysChem, 9(15):2140–2156, 2008.
-
(2008)
Chemphyschem
, vol.9
, Issue.15
, pp. 2140-2156
-
-
Franke, T.A.1
Wixforth, A.2
-
9
-
-
68049133054
-
Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin ii activity in capillary leukocyte trafficking
-
S. Gabriele, A.M. Benoliel, P. Bongrand, and O. Thodoly. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin ii activity in capillary leukocyte trafficking. Biophysical journal, 96(10): 4308–4318, 2009.
-
(2009)
Biophysical Journal
, vol.96
, Issue.10
, pp. 4308-4318
-
-
Gabriele, S.1
Benoliel, A.M.2
Bongrand, P.3
Thodoly, O.4
-
10
-
-
84867325832
-
Microfabricated mimics of in vivo structural cues for the study of guided tumor cell migration
-
D. Gallego-Perez, N. Higuita-Castro, L. Denning, J. DeJesus, K. Dahl, A. Sarkar, and D.J. Hansford. Microfabricated mimics of in vivo structural cues for the study of guided tumor cell migration. Lab on a Chip, 2012.
-
(2012)
Lab on a Chip
-
-
Gallego-Perez, D.1
Higuita-Castro, N.2
Denning, L.3
Dejesus, J.4
Dahl, K.5
Sarkar, A.6
Hansford, D.J.7
-
11
-
-
4544300248
-
Patterning: Principles and some new developments
-
M. Geissler and Y. Xia. Patterning: Principles and some new developments. Advanced Materials, 16(15):1249–1269, 2004.
-
(2004)
Advanced Materials
, vol.16
, Issue.15
, pp. 1249-1269
-
-
Geissler, M.1
Xia, Y.2
-
12
-
-
79959736407
-
Microfluidic chips for pointof-care immunodiagnostics
-
L. Gervais, N. De Rooij, and E. Delamarche. Microfluidic chips for pointof-care immunodiagnostics. Advanced Materials, 23(24):H151–H176, 2011.
-
(2011)
Advanced Materials
, vol.23
, Issue.24
, pp. H151-H176
-
-
Gervais, L.1
de Rooij, N.2
Delamarche, E.3
-
13
-
-
84863697079
-
Microfluidic micropipette aspiration for measuring the deformability of single cells
-
Q. Guo, S. Park, and H. Ma. Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip, 2012a.
-
(2012)
Lab Chip
-
-
Guo, Q.1
Park, S.2
Ma, H.3
-
14
-
-
84857333868
-
Microfluidic biomechanical assay for red blood cells parasitized by plasmodium falciparum
-
Q. Guo, S.J. Reiling, P. Rohrbach, and H. Ma. Microfluidic biomechanical assay for red blood cells parasitized by plasmodium falciparum. Lab on a Chip, 12(6):1143–1150, 2012b.
-
(2012)
Lab on a Chip
, vol.12
, Issue.6
, pp. 1143-1150
-
-
Guo, Q.1
Reiling, S.J.2
Rohrbach, P.3
Ma, H.4
-
15
-
-
85051568784
-
Continuous-flow deformability-based sorting of malaria-infected red blood cells
-
S. Goldfless, �P. Abgrall, K. Tan, J. Niles, C. T. Lim, J. Han, H. Bow, H. W. Hou. Continuous-flow deformability-based sorting of malaria-infected red blood cells. mTAS 2009, Jeju, Korea, pp. 1219, 2009.
-
(2009)
Mtas 2009, Jeju, Korea
, pp. 1219
-
-
Goldfless, S.1
Abgrall, P.2
Tan, K.3
Niles, J.4
Lim, C.T.5
Han, J.6
Bow, H.7
Hou, H.W.8
-
16
-
-
58849145833
-
High deformability of plasmodium vivax-infected red blood cells under microfluidic conditions
-
S. Handayani, D.T. Chiu, E. Tjitra, J.S. Kuo, D. Lampah, E. Kenangalem, L. Renia, G. Snounou, R.N. Price, and N.M. Anstey. High deformability of plasmodium vivax-infected red blood cells under microfluidic conditions. Journal of Infectious Diseases, 199(3):445–450, 2009.
-
(2009)
Journal of Infectious Diseases
, vol.199
, Issue.3
, pp. 445-450
-
-
Handayani, S.1
Chiu, D.T.2
Tjitra, E.3
Kuo, J.S.4
Lampah, D.5
Kenangalem, E.6
Renia, L.7
Snounou, G.8
Price, R.N.9
Anstey, N.M.10
-
17
-
-
67349208419
-
Deformability study of breast cancer cells using microfluidics
-
HW Hou, QS Li, G.Y.H. Lee, AP Kumar, CN Ong, and CT Lim. Deformability study of breast cancer cells using microfluidics. Biomedical microdevices, 11(3):557–564, 2009.
-
(2009)
Biomedical Microdevices
, vol.11
, Issue.3
, pp. 557-564
-
-
Hou, H.W.1
Li, Q.S.2
Lee, G.Y.H.3
Kumar, A.P.4
Ong, C.N.5
Lim, C.T.6
-
18
-
-
77956306329
-
Deformability based cell marginationa simple microfluidic design for malaria-infected erythrocyte separation
-
H.W. Hou, A.A.S. Bhagat, A.G.L. Chong, P. Mao, K.S.W. Tan, J. Han, and C.T. Lim. Deformability based cell marginationa simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip, 10(19): 2605–2613, 2010.
-
(2010)
Lab Chip
, vol.10
, Issue.19
, pp. 2605-2613
-
-
Hou, H.W.1
Bhagat, A.A.S.2
Chong, A.G.L.3
Mao, P.4
Tan, K.S.W.5
Han, J.6
Lim, C.T.7
-
19
-
-
84856495330
-
Microfluidics for applications in cell mechanics and mechanobiology
-
H.W. Hou, W.C. Lee, M.C. Leong, S. Sonam, S.R.K. Vedula, and C.T. Lim. Microfluidics for applications in cell mechanics and mechanobiology. Cellular and Molecular Bioengineering, pages 1–12, 2011.
-
(2011)
Cellular and Molecular Bioengineering
, pp. 1-12
-
-
Hou, H.W.1
Lee, W.C.2
Leong, M.C.3
Sonam, S.4
Vedula, S.R.K.5
Lim, C.T.6
-
20
-
-
67651149786
-
Microengi-neered platforms for cell mechanobiology
-
D.H. Kim, P.K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengi-neered platforms for cell mechanobiology. Annual review of biomedical engineering, 11:203–233, 2009a.
-
(2009)
Annual Review of Biomedical Engineering
, vol.11
, pp. 203-233
-
-
Kim, D.H.1
Wong, P.K.2
Park, J.3
Levchenko, A.4
Sun, Y.5
-
21
-
-
70450076731
-
Rapid detection of mycoplasma pneumonia in a microfluidic device using im-munoagglutination assay and static light scattering
-
K. Kim, H.S. Jung, J.Y. Song, M.R. Lee, K.S. Kim, and K.Y. Suh. Rapid detection of mycoplasma pneumonia in a microfluidic device using im-munoagglutination assay and static light scattering. Electrophoresis, 30 (18):3206–3211, 2009b.
-
(2009)
Electrophoresis
, vol.30
, Issue.18
, pp. 3206-3211
-
-
Kim, K.1
Jung, H.S.2
Song, J.Y.3
Lee, M.R.4
Kim, K.S.5
Suh, K.Y.6
-
22
-
-
2142702936
-
Biology on a chip: Microfabrication for studying the behavior of cultured cells
-
N. Li, A. Tourovskaia, and A. Folch. Biology on a chip: microfabrication for studying the behavior of cultured cells. Critical reviews in biomedical engineering, 31(5-6):423–488, 2003.
-
(2003)
Critical Reviews in Biomedical Engineering
, vol.31
, Issue.5-6
, pp. 423-488
-
-
Li, N.1
Tourovskaia, A.2
Folch, A.3
-
23
-
-
78149244046
-
Continuous scalable blood filtration device using inertial microfluidics
-
A.J. Mach and D. Di Carlo. Continuous scalable blood filtration device using inertial microfluidics. Biotechnology and bioengineering, 107(2): 302–311, 2010.
-
(2010)
Biotechnology and Bioengineering
, vol.107
, Issue.2
, pp. 302-311
-
-
Mach, A.J.1
Di Carlo, D.2
-
25
-
-
85051528011
-
Passive circulating cell sorting by deformability using a microfluidic gradual filter
-
P. Preira, V. Grandne, M. Camara, S. GABRIELE, J.M. Forel, and O. Theodoly. Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab on a Chip, 2012.
-
(2012)
Lab on a Chip
-
-
Preira, P.1
Grandne, V.2
Camara, M.3
Gabriele, S.4
Forel, J.M.5
Theodoly, O.6
-
26
-
-
0002255341
-
Photolithography with transparent reflective photomasks
-
D. Qin, Y. Xia, A.J. Black, and G.M. Whitesides. Photolithography with transparent reflective photomasks. Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, 16(1):98–103, 1998.
-
(1998)
Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures
, vol.16
, Issue.1
, pp. 98-103
-
-
Qin, D.1
Xia, Y.2
Black, A.J.3
Whitesides, G.M.4
-
27
-
-
46149101778
-
Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry
-
M.J. Rosenbluth, W.A. Lam, and D.A. Fletcher. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip, 8(7):1062–1070, 2008.
-
(2008)
Lab Chip
, vol.8
, Issue.7
, pp. 1062-1070
-
-
Rosenbluth, M.J.1
Lam, W.A.2
Fletcher, D.A.3
-
28
-
-
0345166901
-
A microfluidic model for single-cell capillary obstruction by plasmodium falciparum-infected erythrocytes
-
J.P. Shelby, J. White, K. Ganesan, P.K. Rathod, and D.T. Chiu. A microfluidic model for single-cell capillary obstruction by plasmodium falciparum-infected erythrocytes. Proceedings of the National Academy of Sciences, 100(25):14618–14622, 2003.
-
(2003)
Proceedings of the National Academy of Sciences
, vol.100
, Issue.25
, pp. 14618-14622
-
-
Shelby, J.P.1
White, J.2
Ganesan, K.3
Rathod, P.K.4
Chiu, D.T.5
-
29
-
-
34249932362
-
Biomechanics and biophysics of cancer cells
-
S. Suresh. Biomechanics and biophysics of cancer cells. Acta Materialia, 55 (12):3989–4014, 2007.
-
(2007)
Acta Materialia
, vol.55
, Issue.12
, pp. 3989-4014
-
-
Suresh, S.1
-
30
-
-
37649002771
-
Cell and biomolecular mechanics in silico
-
A. Vaziri and A. Gopinath. Cell and biomolecular mechanics in silico. Nature materials, 7(1):15–23, 2007.
-
(2007)
Nature Materials
, vol.7
, Issue.1
, pp. 15-23
-
-
Vaziri, A.1
Gopinath, A.2
-
31
-
-
85051474391
-
Phase separation micromolding. Phd dissertation, university of twente, enschede
-
L. Vogelaar. Phase separation micromolding. phd dissertation, university of twente, enschede, the netherlands, 2005.
-
(2005)
The Netherlands
-
-
Vogelaar, L.1
-
32
-
-
0033301647
-
Microfabrication in biology and medicine
-
J. Voldman, M.L. Gray, and M.A. Schmidt. Microfabrication in biology and medicine. Annual review of biomedical engineering, 1(1):401–425, 1999.
-
(1999)
Annual Review of Biomedical Engineering
, vol.1
, Issue.1
, pp. 401-425
-
-
Voldman, J.1
Gray, M.L.2
Schmidt, M.A.3
-
33
-
-
85051499128
-
Fabrication and characterization of micro/nano filter for isolation of waterborne pathogens. Phd dissertation, nanyang technological university
-
M.E. Warkiani. Fabrication and characterization of micro/nano filter for isolation of waterborne pathogens. phd dissertation, nanyang technological university, singapore, 2012.
-
(2012)
Singapore
-
-
Warkiani, M.E.1
-
34
-
-
33847148076
-
Microfabrication meets microbiology
-
D.B. Weibel, W.R. DiLuzio, and G.M. Whitesides. Microfabrication meets microbiology. Nature Reviews Microbiology, 5(3):209–218, 2007.
-
(2007)
Nature Reviews Microbiology
, vol.5
, Issue.3
, pp. 209-218
-
-
Weibel, D.B.1
Diluzio, W.R.2
Whitesides, G.M.3
-
35
-
-
33747117373
-
The origins and the future of microfluidics
-
G.M. Whitesides. The origins and the future of microfluidics. Nature, 442 (7101):368–373, 2006.
-
(2006)
Nature
, vol.442
, Issue.7101
, pp. 368-373
-
-
Whitesides, G.M.1
-
36
-
-
79959636906
-
The physics of cancer: The role of physical interactions and mechanical forces in metastasis
-
D. Wirtz, K. Konstantopoulos, and P.C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 11(7):512–522, 2011.
-
(2011)
Nature Reviews Cancer
, vol.11
, Issue.7
, pp. 512-522
-
-
Wirtz, D.1
Konstantopoulos, K.2
Searson, P.C.3
-
38
-
-
0030416264
-
Microcontact printing with a cylindrical rolling stamp: A practical step toward automatic manufacturing of patterns with submicrometersized features
-
Y. Xia, D. Qin, and G.M. Whitesides. Microcontact printing with a cylindrical rolling stamp: A practical step toward automatic manufacturing of patterns with submicrometersized features. Advanced Materials, 8(12): 1015–1017, 1996.
-
(1996)
Advanced Materials
, vol.8
, Issue.12
, pp. 1015-1017
-
-
Xia, Y.1
Qin, D.2
Whitesides, G.M.3
-
39
-
-
0031072203
-
Replica molding using polymeric materials: A practical step toward nanomanufacturing
-
Y. Xia, J.J. McClelland, R. Gupta, D. Qin, X.M. Zhao, L.L. Sohn, R.J. Celotta, and G.M. Whitesides. Replica molding using polymeric materials: A practical step toward nanomanufacturing. Advanced Materials, 9(2):147–149, 2004.
-
(2004)
Advanced Materials
, vol.9
, Issue.2
, pp. 147-149
-
-
Xia, Y.1
McClelland, J.J.2
Gupta, R.3
Qin, D.4
Zhao, X.M.5
Sohn, L.L.6
Celotta, R.J.7
Whitesides, G.M.8
-
41
-
-
84869237943
-
Microfluidics separation reveals the stem-celllike deformability of tumor-initiating cells
-
W. Zhang, K. Kai, D.S. Choi, T. Iwamoto, Y.H. Nguyen, H. Wong, M.D. Landis, N.T. Ueno, J. Chang, and L. Qin. Microfluidics separation reveals the stem-celllike deformability of tumor-initiating cells. Proceedings of the National Academy of Sciences, 2012.
-
(2012)
Proceedings of the National Academy of Sciences
-
-
Zhang, W.1
Kai, K.2
Choi, D.S.3
Iwamoto, T.4
Nguyen, Y.H.5
Wong, H.6
Landis, M.D.7
Ueno, N.T.8
Chang, J.9
Qin, L.10
-
43
-
-
84862882140
-
High-throughput biophysical measurement of human red blood cells
-
Y. Zheng, E. Shojaei-Baghini, A. Azad, C. Wang, and Y. Sun. High-throughput biophysical measurement of human red blood cells. Lab on a Chip, 2012.
-
(2012)
Lab on a Chip
-
-
Zheng, Y.1
Shojaei-Baghini, E.2
Azad, A.3
Wang, C.4
Sun, Y.5
|