메뉴 건너뛰기




Volumn 142, Issue , 2014, Pages 478-485

Integrated constraint based clustering algorithm for high dimensional data

Author keywords

Constraint based clustering; High dimensional data; Subspace clustering

Indexed keywords

ITERATIVE METHODS;

EID: 84904368528     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.04.013     Document Type: Article
Times cited : (16)

References (25)
  • 1
    • 0347718066 scopus 로고    scopus 로고
    • Fast algorithms for projected clustering
    • Proceedings of the ACM SIGMOD'
    • C. Aggarwal, C. Procopiuc, J. Wolf, et al., Fast algorithms for projected clustering, in: Proceedings of the ACM SIGMOD'99, 1999, pp. 61-72.
    • (1999) , vol.99 , pp. 61-72
    • Aggarwal, C.1    Procopiuc, C.2    Wolf, J.3
  • 2
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional space
    • Proceedings of the SIGMOD'
    • C. Aggarwal, P. Yu, Finding generalized projected clusters in high dimensional space, in: Proceedings of the SIGMOD'00, 2000.
    • (2000)
    • Aggarwal, C.1    Yu, P.2
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Proceedings of the ACM SIGMOD'
    • R. Agrawal, J. Gehrke, D. Gunopulos, et al., Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of the ACM SIGMOD'98, 1998, pp. 94-105.
    • (1998) , vol.98 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3
  • 4
    • 47249137675 scopus 로고    scopus 로고
    • DUSC: dimensionality unbiased subspace clustering
    • Proceedings of the ICDM'
    • I. Assent, M. Krieger, E. Muller, et al., DUSC: dimensionality unbiased subspace clustering, in: Proceedings of the ICDM'07, 2007.
    • (2007) , vol.7
    • Assent, I.1    Krieger, M.2    Muller, E.3
  • 5
    • 36948999941 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007,http://archive.ics.uci.edu/ml/.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 6
    • 84886567160 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • University of California, School of Information and Computer Science, Irvine, CA
    • K. Bache, M. Lichman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2013, http://archive.ics.uci.edu/ml/.
    • (2013)
    • Bache, K.1    Lichman, M.2
  • 7
    • 21844457672 scopus 로고    scopus 로고
    • Learning a mahalanobis metric from equivalence constraints
    • Bar-Hillel A., Hertz T., Shental N., et al. Learning a mahalanobis metric from equivalence constraints. J. Mach. Learn. Res. 2005, 6:937-965.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 937-965
    • Bar-Hillel, A.1    Hertz, T.2    Shental, N.3
  • 8
    • 85042972591 scopus 로고    scopus 로고
    • Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC
    • S. Basu, I. Dadidson, K. Wagstaff, Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC, 2008.
    • (2008)
    • Basu, S.1    Dadidson, I.2    Wagstaff, K.3
  • 9
    • 19544386608 scopus 로고    scopus 로고
    • Densigy connected clustering with local subspace preferences
    • Proceedings of the ICDM'
    • C. Bohm, K. Kailing, H.-P. Kriegel, P. Kroger, Densigy connected clustering with local subspace preferences, in: Proceedings of the ICDM'04, 2004.
    • (2004) , vol.4
    • Bohm, C.1    Kailing, K.2    Kriegel, H.-P.3    Kroger, P.4
  • 10
    • 77952547619 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction using pairwise equivalence constraints
    • Proceedings of the CVTA'
    • H. Cevilkalp, J. Verbeek, F. Jurie, et al., Semi-supervised dimensionality reduction using pairwise equivalence constraints, in: Proceedings of the CVTA'08, 2008.
    • (2008) , vol.8
    • Cevilkalp, H.1    Verbeek, J.2    Jurie, F.3
  • 11
    • 0002646822 scopus 로고    scopus 로고
    • Entropy-Based subspace clustering for mining numerical data
    • Proceedings of the SIGKDD'99
    • C. Cheng, A. Fu, Y. Zhang, Entropy-Based subspace clustering for mining numerical data, in: Proceedings of the SIGKDD'99, 1999, pp. 84-93.
    • (1999) , pp. 84-93
    • Cheng, C.1    Fu, A.2    Zhang, Y.3
  • 12
    • 77952760641 scopus 로고    scopus 로고
    • Constrained locally weighted clustering
    • Proceedings of the VLDB'04
    • H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB'04, 2008, pp. 90-101.
    • (2008) , pp. 90-101
    • Cheng, H.1    Hua, K.A.2    Vu, K.3
  • 13
    • 2942560799 scopus 로고    scopus 로고
    • Subspace clustering of high dimensional data
    • Proceedings of the SDM'04
    • C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the SDM'04, 2004.
    • (2004)
    • Domeniconi, C.1    Papadopoulos, D.2    Gunopulos, D.3    Ma, S.4
  • 15
    • 84904323264 scopus 로고    scopus 로고
    • Constraint based subspace clustering
    • Proceedings of the SDM'09, 2009
    • E. Fromont, A. Prado, C. Robardet, 2009. Constraint based subspace clustering, in: Proceedings of the SDM'09, 2009.
    • (2009)
    • Fromont, E.1    Prado, A.2    Robardet, C.3
  • 16
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM Trans
    • Article 1.
    • H. Kriegel, P. Kroger, A. Zimek, Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM Trans. Knowl. Disc. Data, 3 (2009), Article 1.
    • (2009) Knowl. Disc. Data , vol.3
    • Kriegel, H.1    Kroger, P.2    Zimek, A.3
  • 17
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • Proceedings of the VLDB
    • E. Müller, S. Günnemann, I. Assent, T. Seidl, Evaluating clustering in subspace projections of high dimensional data, in: Proceedings of the VLDB,09, 2009, pp. 1270-1281.
    • (2009) , vol.9 , pp. 1270-1281
    • Müller, E.1    Günnemann, S.2    Assent, I.3    Seidl, T.4
  • 18
    • 41149123106 scopus 로고    scopus 로고
    • Adaptive grids for clustering massive data sets
    • Proceedings of the SDM'01
    • H. Nagesh, S. Goil, A. Choudhary, Adaptive grids for clustering massive data sets, in: Proceedings of the SDM'01, 2001.
    • (2001)
    • Nagesh, H.1    Goil, S.2    Choudhary, A.3
  • 19
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering. 50 years beyond K-means
    • Jain A.K. Data clustering. 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31:651-666.
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 20
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data. a review
    • Parsons L., Haque E., Liu H. Subspace clustering for high dimensional data. a review. SIGKDD Explor. 2010, 90-105.
    • (2010) SIGKDD Explor. , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 21
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT. a fast and intelligent subspace clustering algorithm using dimension voting
    • Woo K., Lee J., Kim M. FINDIT. a fast and intelligent subspace clustering algorithm using dimension voting. Inf. Softw. Technol. 2004, 46:255-271.
    • (2004) Inf. Softw. Technol. , vol.46 , pp. 255-271
    • Woo, K.1    Lee, J.2    Kim, M.3
  • 22
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
    • Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on mixture models. Neural Netw. 2002, 15:1125-1151.
    • (2002) Neural Netw. , vol.15 , pp. 1125-1151
    • Xu, L.1
  • 23
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • L. Xu, A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving, Pattern Recognit. 40 (2007) 2129-2153.
    • (2007) Pattern Recognit , vol.40 , pp. 2129-2153
    • Xu, L.1
  • 24
    • 79959501613 scopus 로고    scopus 로고
    • Feature selection and kernel learning for local learning-based clustering
    • Zeng H., Cheung Y-M. Feature selection and kernel learning for local learning-based clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(8):1532-2547.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1532-2547
    • Zeng, H.1    Cheung, Y.-M.2
  • 25
    • 79951737390 scopus 로고    scopus 로고
    • Constraint based dimension correlation and distance divergence for clustering high-dimensional data
    • Proceedings of the ICDM'10
    • X.C. Zhang, Y. Wu, Q. Qiu, Constraint based dimension correlation and distance divergence for clustering high-dimensional data, in: Proceedings of the ICDM'10, 2010.
    • (2010)
    • Zhang, X.C.1    Wu, Y.2    Qiu, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.