메뉴 건너뛰기




Volumn 14, Issue 7, 2014, Pages 12285-12304

Clustering-based ensemble learning for activity recognition in smart homes

Author keywords

Activity recognition; Classifier ensembles; Clustering; Smart homes

Indexed keywords

AUTOMATION; INTELLIGENT BUILDINGS; SENSORS;

EID: 84904164792     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s140712285     Document Type: Article
Times cited : (44)

References (36)
  • 5
    • 84893979840 scopus 로고    scopus 로고
    • Application of a Cluster-Based Classifier Ensemble to Activity Recognition in Smart Homes. Ambient Assisted Living and Active Agin
    • Jurek, A.; Bi, Y.; Wu, S.; Nugent, C.D. Application of a Cluster-Based Classifier Ensemble to Activity Recognition in Smart Homes. Ambient Assisted Living and Active Agin. Lect. Notes Comput. Sci. 2013, 8277, 88-95.
    • (2013) Lect. Notes Comput. Sci. , vol.8277 , pp. 88-95
    • Jurek, A.1    Bi, Y.2    Wu, S.3    Nugent, C.D.4
  • 7
    • 35048836274 scopus 로고    scopus 로고
    • Activity Recognition in the Home Using Simple and Ubiquitous Sensors
    • In Massachusetts Institute of Technology: Cambridge, MA, USA
    • Tapia, E.M.; Intille, S.; Larson, K. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In Pervasive Computing; Massachusetts Institute of Technology: Cambridge, MA, USA, 2004; pp. 158-175.
    • (2004) Pervasive Computing , pp. 158-175
    • Tapia, E.M.1    Intille, S.2    Larson, K.3
  • 11
    • 38149039398 scopus 로고    scopus 로고
    • A long-term evaluation of sensing modalities for activity recognition
    • Logan, B.; Healey, J.; Philipose, M.; Tapia, E.M.; Intille, S. A long-term evaluation of sensing modalities for activity recognition. Ubicomp 2007, 483-500.
    • (2007) Ubicomp , pp. 483-500
    • Logan, B.1    Healey, J.2    Philipose, M.3    Tapia, E.M.4    Intille, S.5
  • 12
    • 53949117607 scopus 로고    scopus 로고
    • Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers
    • Yang, J.Y.; Wang, J.S. Chen, Y.P. Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recogni. Lett. 2008, 29, 2213-2220.
    • (2008) Pattern Recogni. Lett. , vol.29 , pp. 2213-2220
    • Yang, J.Y.1    Wang, J.S.2    Chen, Y.P.3
  • 13
    • 84904166103 scopus 로고    scopus 로고
    • Dealing with activities with diffuse boundaries. In Proceedings of the Workshop on How to Do Good Activity Recognition Research
    • Helsinki, Finland, May
    • Ye, J.; Coyle, L.; McKeever, S.; Dobson, S.A. Dealing with activities with diffuse boundaries. In Proceedings of the Workshop on How to Do Good Activity Recognition Research: Experimental Methodologies, Evaluation Metrics and Reproducility, Helsinki, Finland, May 2010.
    • (2010) Experimental Methodologies, Evaluation Metrics and Reproducility
    • Ye, J.1    Coyle, L.2    McKeever, S.3    Dobson, S.A.4
  • 14
    • 75449099590 scopus 로고    scopus 로고
    • Human Activity Recognition and Pattern Discovery
    • Kim, E.; Helal, S.; Cook, D. Human Activity Recognition and Pattern Discovery. Pervasive Comput. 2010, 9, 48-53.
    • (2010) Pervasive Comput. , vol.9 , pp. 48-53
    • Kim, E.1    Helal, S.2    Cook, D.3
  • 15
    • 84858239192 scopus 로고    scopus 로고
    • Learning Setting-Generalized Activity Models for Smart Spaces
    • Cook, D.J. Learning Setting-Generalized Activity Models for Smart Spaces. Intell. Syst. 2012, 27, 32-38.
    • (2012) Intell. Syst. , vol.27 , pp. 32-38
    • Cook, D.J.1
  • 16
    • 84877683576 scopus 로고    scopus 로고
    • Activity Recognition Using Hybrid Generative/Discriminative Models on Home Enviroments Using Binary Sensors
    • Ordonez, F.J.; Toledo, P.; Sanchis, A. Activity Recognition Using Hybrid Generative/Discriminative Models on Home Enviroments Using Binary Sensors. Sensors 2013, 13, 5460-5477.
    • (2013) Sensors , vol.13 , pp. 5460-5477
    • Ordonez, F.J.1    Toledo, P.2    Sanchis, A.3
  • 18
    • 84860459323 scopus 로고    scopus 로고
    • A Knowledge-Driven Approach to Activity Recognition in Smart Homes
    • Chen, L.; Nugent, C.D.; Wang, H. A Knowledge-Driven Approach to Activity Recognition in Smart Homes. IEEE Trans. Knowl. Data Eng. 2012, 24, 961-974.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , pp. 961-974
    • Chen, L.1    Nugent, C.D.2    Wang, H.3
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random Forest
    • Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 25
    • 0037403516 scopus 로고    scopus 로고
    • Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy
    • Kuncheva, L.I.; Whitaker, C.J. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn. 2003, 51, 181-207.
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 26
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Melville, P.; Mooney, R. Creating diversity in ensembles using artificial data. Inf. Fusion 2004, 6, 99-111.
    • (2004) Inf. Fusion , vol.6 , pp. 99-111
    • Melville, P.1    Mooney, R.2
  • 27
    • 84948152666 scopus 로고    scopus 로고
    • Using Diversity in Preparing Ensembles of Classifiers Based on Different Features Subsets to Minimize Generalization Error
    • In Freiburg, Germany, 5-7 September
    • Zenobi, G.; Cunningham, P. Using Diversity in Preparing Ensembles of Classifiers Based on Different Features Subsets to Minimize Generalization Error. In Proceedings of the 12th European Conference on Machine Learning, Freiburg, Germany, 5-7 September 2001; pp. 576-587.
    • (2001) Proceedings of the 12th European Conference on Machine Learning , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 28
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 31
    • 75049085494 scopus 로고    scopus 로고
    • Object relevance weight pattern mining for activity recognition and segmentation
    • Palmes, P.; Pung, H.K.; Gu, T.; Xue, W.; Chen, S. Object relevance weight pattern mining for activity recognition and segmentation. Pervasive Mobile Comput. 2010, 6, 43-57.
    • (2010) Pervasive Mobile Comput. , vol.6 , pp. 43-57
    • Palmes, P.1    Pung, H.K.2    Gu, T.3    Xue, W.4    Chen, S.5
  • 34
    • 0032139235 scopus 로고    scopus 로고
    • The random supspace method for construction decision trees
    • Ho. T.K. The random supspace method for construction decision trees. IEEE Trans. Pettern Anal. Mach. Intel. 1998, 20, 832-844.
    • (1998) IEEE Trans. Pettern Anal. Mach. Intel. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 35
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation
    • Powers, D. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. Mach. Learn. Technol. 2011, 2, 37-63.
    • (2011) Mach. Learn. Technol. , vol.2 , pp. 37-63
    • Powers, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.