메뉴 건너뛰기




Volumn 29, Issue 16, 2008, Pages 2213-2220

Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers

Author keywords

Acceleration data; Activity recognition; Feature extraction; Feature subset selection; Neural network; Triaxial accelerometer

Indexed keywords

ACCELEROMETERS; ARTIFICIAL INTELLIGENCE; CLASSIFIERS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NETWORK PROTOCOLS; NEURAL NETWORKS; PHILOSOPHICAL ASPECTS; SENSOR NETWORKS;

EID: 53949117607     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2008.08.002     Document Type: Article
Times cited : (313)

References (23)
  • 1
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • Bao L., and Intille S.S. Activity recognition from user-annotated acceleration data. LNCS 3001 (2004) 1-17
    • (2004) LNCS , vol.3001 , pp. 1-17
    • Bao, L.1    Intille, S.S.2
  • 3
    • 0031106807 scopus 로고    scopus 로고
    • A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity
    • Bouten C.V.C., Koekkoek K.T.M., Verduin M., Kodde R., and Janssen J.D. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 44 3 (1997) 136-147
    • (1997) IEEE Trans. Biomed. Eng. , vol.44 , Issue.3 , pp. 136-147
    • Bouten, C.V.C.1    Koekkoek, K.T.M.2    Verduin, M.3    Kodde, R.4    Janssen, J.D.5
  • 6
    • 53949103130 scopus 로고    scopus 로고
    • Using hierarchical clustering methods to classify motor activities of copd patients from wearable sensor data
    • Delsey S., Marilyn M., John R., and Paolo B. Using hierarchical clustering methods to classify motor activities of copd patients from wearable sensor data. J. Neuroeng. Rehabil. 2 (2005) 1-14
    • (2005) J. Neuroeng. Rehabil. , vol.2 , pp. 1-14
    • Delsey, S.1    Marilyn, M.2    John, R.3    Paolo, B.4
  • 7
    • 0000643180 scopus 로고
    • Common principal components in K groups
    • Flury B.N. Common principal components in K groups. J. Amer. Statist. Assoc. 79 (1984) 892-898
    • (1984) J. Amer. Statist. Assoc. , vol.79 , pp. 892-898
    • Flury, B.N.1
  • 9
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved RPROP learning algorithms
    • Igel C., and Hasken M. Empirical evaluation of the improved RPROP learning algorithms. Neurocomputing 50 (2003) 105-123
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Hasken, M.2
  • 10
    • 30744436064 scopus 로고    scopus 로고
    • Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
    • Karantonis D.M., Narayanan M.R., Mathie M., Lovell N.H., and Celler B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inform. Technol. Biomed. 10 1 (2006) 156-167
    • (2006) IEEE Trans. Inform. Technol. Biomed. , vol.10 , Issue.1 , pp. 156-167
    • Karantonis, D.M.1    Narayanan, M.R.2    Mathie, M.3    Lovell, N.H.4    Celler, B.G.5
  • 11
    • 84950659640 scopus 로고
    • Between-groups comparison of principal components
    • Krzanowski W.J. Between-groups comparison of principal components. J. Amer. Statist. Assoc. 74 367 (1979) 703-707
    • (1979) J. Amer. Statist. Assoc. , vol.74 , Issue.367 , pp. 703-707
    • Krzanowski, W.J.1
  • 12
    • 0036906895 scopus 로고    scopus 로고
    • Mathie, M.J., Lovell, N.H., Coster, A.C.F., Celler, B.G., 2002. Determining activity using a triaxial accelerometer. In: Proc. 2nd Joint EMBS-BMES Conf. 3, pp. 2481-2482.
    • Mathie, M.J., Lovell, N.H., Coster, A.C.F., Celler, B.G., 2002. Determining activity using a triaxial accelerometer. In: Proc. 2nd Joint EMBS-BMES Conf. 3, pp. 2481-2482.
  • 13
    • 6344237275 scopus 로고    scopus 로고
    • Classification of basic daily movements using a triaxial accelerometer
    • Mathie M.J., Celler B.G., Lovell N.H., and Coster A.C.F. Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput. 42 5 (2004) 679-687
    • (2004) Med. Biol. Eng. Comput. , vol.42 , Issue.5 , pp. 679-687
    • Mathie, M.J.1    Celler, B.G.2    Lovell, N.H.3    Coster, A.C.F.4
  • 14
    • 33750826738 scopus 로고    scopus 로고
    • Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M., 2006. Activity recognition and monitoring using multiple sensors on different body positions. In: Proc. - BSN 2006: Internat. Workshop on Wearable and Implantable Body Sensor Networks, pp. 113-116.
    • Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M., 2006. Activity recognition and monitoring using multiple sensors on different body positions. In: Proc. - BSN 2006: Internat. Workshop on Wearable and Implantable Body Sensor Networks, pp. 113-116.
  • 16
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Trans. Neural Networks 6 5 (1995) 1212-1228
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 17
    • 29344474528 scopus 로고    scopus 로고
    • Ravi, N., Dandekar, N., Mysore, P., Littman, M.L., 2005. Activity recognition from accelerometer data. In: Proc. 17th Innovative Applications of Artificial Intelligence Conf.
    • Ravi, N., Dandekar, N., Mysore, P., Littman, M.L., 2005. Activity recognition from accelerometer data. In: Proc. 17th Innovative Applications of Artificial Intelligence Conf.
  • 18
    • 84943274699 scopus 로고
    • Direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • Riedmiller M., and Braun H. Direct adaptive method for faster backpropagation learning: The RPROP algorithm. IEEE Internat. Conf. Neural Networks 1 (1993) 586-591
    • (1993) IEEE Internat. Conf. Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 20
    • 53949088913 scopus 로고    scopus 로고
    • Solà i Carós, J., Chételat, O., Celka, P., Dasen, S., 2005. Very low complexity algorithm for ambulatory activity classification. In: 3rd European Med. Biol. Conf. EMBEC 2005.
    • Solà i Carós, J., Chételat, O., Celka, P., Dasen, S., 2005. Very low complexity algorithm for ambulatory activity classification. In: 3rd European Med. Biol. Conf. EMBEC 2005.
  • 21
    • 53949094352 scopus 로고    scopus 로고
    • Song, K.-T., Wang, Y.-Q., 2005. Remote activity monitoring of the elderly using a two-axis accelerometer. In: Proc. 2005 CACS Automatic Control Conf. Tainan, Taiwan 1 (4), p. 18-23.
    • Song, K.-T., Wang, Y.-Q., 2005. Remote activity monitoring of the elderly using a two-axis accelerometer. In: Proc. 2005 CACS Automatic Control Conf. Tainan, Taiwan 1 (4), p. 18-23.
  • 23
    • 33645471785 scopus 로고    scopus 로고
    • Feature subset selection and feature ranking for multivariate time series
    • Yoon H., Yang K., and Shahabi C. Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Knowledge Data Eng. 17 9 (2005) 1186-1198
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , Issue.9 , pp. 1186-1198
    • Yoon, H.1    Yang, K.2    Shahabi, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.