메뉴 건너뛰기




Volumn 40, Issue 6, 2007, Pages 1734-1744

Newtonian clustering: An approach based on molecular dynamics and global optimization

Author keywords

Clustering; Global optimization; Molecular dynamics; Order statistics

Indexed keywords

CONFORMAL MAPPING; GLOBAL OPTIMIZATION; LEARNING ALGORITHMS; MATHEMATICAL MODELS; MOLECULAR DYNAMICS; NONLINEAR EQUATIONS;

EID: 33947188020     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2006.07.012     Document Type: Article
Times cited : (25)

References (35)
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39 (1977) 1-38
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan G.W., and Cooper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50 (1985) 159-179
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 9
    • 0030291361 scopus 로고    scopus 로고
    • On the number of clusters
    • Hardy A. On the number of clusters. Comput. Stat. Data Anal. 23 (1996) 83-96
    • (1996) Comput. Stat. Data Anal. , vol.23 , pp. 83-96
    • Hardy, A.1
  • 10
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C., and Raftery A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 4 (1998) 578-588
    • (1998) Comput. J. , vol.4 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 11
    • 33947150744 scopus 로고    scopus 로고
    • H. Akaike, Information theory and an extension of the maximum likelihood principle, in: Second International Symposium on Information Theory, Budapest, 1973, pp. 267-281.
  • 12
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 6 (1978) 461-464
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 13
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • Smyth P. Model selection for probabilistic clustering using cross-validated likelihood. Stat. Comput. 10 (2000) 63-72
    • (2000) Stat. Comput. , vol.10 , pp. 63-72
    • Smyth, P.1
  • 14
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • Chickering D., and Heckerman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Mach. Learning 29 2-3 (1997) 181-212
    • (1997) Mach. Learning , vol.29 , Issue.2-3 , pp. 181-212
    • Chickering, D.1    Heckerman, D.2
  • 15
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 16
    • 33947176866 scopus 로고    scopus 로고
    • H. Chipman, E.I. George, R.E. McCulloch, The practical implementation of Bayesian model selection (with discussion), IMS Lecture Notes-Monograph Series, vol. 38, 2001, pp. 67-134.
  • 17
    • 33947133418 scopus 로고    scopus 로고
    • A. Corduneanu, C.M. Bishop, Variational Bayesian model selection for mixture distributions, in: AI and Statistics, 2001, pp. 27-34.
  • 22
    • 0023420912 scopus 로고
    • Stochastic global optimization methods. Part I: clustering methods
    • Kan A.H.G.R., and Timmer G.T. Stochastic global optimization methods. Part I: clustering methods. Math. Programming 39 (1987) 27-56
    • (1987) Math. Programming , vol.39 , pp. 27-56
    • Kan, A.H.G.R.1    Timmer, G.T.2
  • 23
    • 0023419959 scopus 로고
    • Stochastic global optimization methods. Part II: multi level methods
    • Kan A.H.G.R., and Timmer G.T. Stochastic global optimization methods. Part II: multi level methods. Math. Programming 39 (1987) 57-78
    • (1987) Math. Programming , vol.39 , pp. 57-78
    • Kan, A.H.G.R.1    Timmer, G.T.2
  • 24
    • 0000854357 scopus 로고
    • Topographical global optimization using pre-sampled points
    • Torn A., and Viitanen S. Topographical global optimization using pre-sampled points. J. Global Optim. 5 (1994) 267-276
    • (1994) J. Global Optim. , vol.5 , pp. 267-276
    • Torn, A.1    Viitanen, S.2
  • 25
    • 0006213254 scopus 로고
    • Topographical multilevel single linkage
    • Ali M.M., and Storey C. Topographical multilevel single linkage. J. Global Optim. 5 (1994) 349-358
    • (1994) J. Global Optim. , vol.5 , pp. 349-358
    • Ali, M.M.1    Storey, C.2
  • 26
    • 1842475318 scopus 로고    scopus 로고
    • PANMIN: sequential and parallel global optimization procedures with a variety of options for the local search strategy
    • Theos F.V., Lagaris I.E., and Papageorgiou D.G. PANMIN: sequential and parallel global optimization procedures with a variety of options for the local search strategy. Comput. Phys. Commun. 159 (2004) 63-69
    • (2004) Comput. Phys. Commun. , vol.159 , pp. 63-69
    • Theos, F.V.1    Lagaris, I.E.2    Papageorgiou, D.G.3
  • 27
    • 33646150798 scopus 로고    scopus 로고
    • The method of quantum clustering
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA
    • Horn D., and Gottlieb A. The method of quantum clustering. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems 14 (2001), MIT Press, Cambridge, MA 769-776
    • (2001) Advances in Neural Information Processing Systems 14 , pp. 769-776
    • Horn, D.1    Gottlieb, A.2
  • 28
    • 0037033417 scopus 로고    scopus 로고
    • D Horn, A. Gottlieb, Algorithm for data clustering in pattern recognition problems based on quantum mechanics, Phys. Rev. Lett. 88(1) (2002) 018702-4.
  • 29
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for Gaussian mixture learning
    • Vlassis N., and Likas A. A greedy EM algorithm for Gaussian mixture learning. Neural Process. Lett. 15 (2001) 77-87
    • (2001) Neural Process. Lett. , vol.15 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 30
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of Gaussian mixture models
    • Verbeek J.J., Vlassis N., and Krose B. Efficient greedy learning of Gaussian mixture models. Neural Comput. 15 2 (2003) 469-485
    • (2003) Neural Comput. , vol.15 , Issue.2 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Krose, B.3
  • 31
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1065-1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 35
    • 33947180190 scopus 로고    scopus 로고
    • C.J. Merz, P.M. Murphy, UCI repository of machine learning databases, 〈http://www.ics.uci.edu/~mlearn/MLRepository.html〉, Irvine, CA, 1998.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.