메뉴 건너뛰기




Volumn 37, Issue 3, 2012, Pages 274-298

Novel machine learning methods for ERP analysis: A validation from research on infants at risk for autism

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; ATTENTION; AUTISM; AUTOMATED PATTERN RECOGNITION; DISCRIMINANT ANALYSIS; ELECTROENCEPHALOGRAPHY; EVOKED RESPONSE; EYE FIXATION; HUMAN; INFANT; METHODOLOGY; PATHOPHYSIOLOGY; PHYSIOLOGY; REACTION TIME; REPRODUCIBILITY; RISK; STATISTICAL MODEL;

EID: 84862058665     PISSN: 87565641     EISSN: None     Source Type: Journal    
DOI: 10.1080/87565641.2011.650808     Document Type: Article
Times cited : (50)

References (109)
  • 2
    • 77955394793 scopus 로고    scopus 로고
    • Feature selection in omics prediction problems using cat scores and false non-discovery rate control
    • Ahdesmki, M., and, Strimmer, K. 2010. Feature selection in omics prediction problems using cat scores and false non-discovery rate control. Annals of Applied Statistics, 4: 503-519.
    • (2010) Annals of Applied Statistics , vol.4 , pp. 503-519
    • Ahdesmki, M.1    Strimmer, K.2
  • 3
    • 66949173675 scopus 로고    scopus 로고
    • A simple classification tool for single-trial analysis of ERP components
    • Bandt, C., Weymar, M., Samaga, D., and, Hamm, A. O. 2009. A simple classification tool for single-trial analysis of ERP components. Psychophysiology, 46 (4): 747-757.
    • (2009) Psychophysiology , vol.46 , Issue.4 , pp. 747-757
    • Bandt, C.1    Weymar, M.2    Samaga, D.3    Hamm, A.O.4
  • 5
    • 77953470957 scopus 로고    scopus 로고
    • Measurement of mismatch negativity in individuals: A study using single-trial analysis
    • Bishop, D. V. M., and, Hardiman, M. J. 2010. Measurement of mismatch negativity in individuals: A study using single-trial analysis. Psychophysiology, 47: 697-705.
    • (2010) Psychophysiology , vol.47 , pp. 697-705
    • Bishop, D.V.M.1    Hardiman, M.J.2
  • 6
    • 79955024787 scopus 로고    scopus 로고
    • Single-trial analysis and classification of ERP compoentsA tutorial
    • doi: 10.1016/j.neuroimage.2010.06.048
    • Blankertz, B., Lemm, S., Treder, M., Haufe, S., and, Mller, K.-R. 2010. Single-trial analysis and classification of ERP compoentsA tutorial. NeuroImage, doi: 10.1016/j.neuroimage.2010.06.048
    • (2010) NeuroImage
    • Blankertz, B.1    Lemm, S.2    Treder, M.3    Haufe, S.4    Mller, K.-R.5
  • 8
    • 79951778987 scopus 로고    scopus 로고
    • EEG complexity as a biomarker for autism spectrum disorder risk
    • doi: 10.1186/1741-7015-9-18
    • Bosl, W., Tiemey, A., Tager-Flusberg, H., and, Nelson, C. 2011. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine, 9 (18) doi: 10.1186/1741-7015-9-18
    • (2011) BMC Medicine , vol.9 , Issue.18
    • Bosl, W.1    Tiemey, A.2    Tager-Flusberg, H.3    Nelson, C.4
  • 10
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression: The X-random case
    • Breiman, L., and, Spector, P. 1992. Submodel selection and evaluation in regression: The X-random case. International Statistical Review, 60: 291-319.
    • (1992) International Statistical Review , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 14
    • 77952878088 scopus 로고    scopus 로고
    • Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers
    • Das, K., Giesbrecht, B., and, Eckstein, M. P. 2010. Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers. Neuroimage, 51 (4): 1425-1437.
    • (2010) Neuroimage , vol.51 , Issue.4 , pp. 1425-1437
    • Das, K.1    Giesbrecht, B.2    Eckstein, M.P.3
  • 15
    • 84920491468 scopus 로고    scopus 로고
    • Methods for acquiring and analysing infant event-related potentials
    • Edited by: de Haan, M. Hove, England: Psychology Press
    • de Boer, T., Scott, L. S., and, Nelson, C. A. 2007. Methods for acquiring and analysing infant event-related potentials. In Infant EEG and event-related potentials, Edited by: de Haan, M. 5-37. Hove, England: Psychology Press.
    • (2007) Infant EEG and Event-related Potentials , pp. 5-37
    • De Boer, T.1    Scott, L.S.2    Nelson, C.A.3
  • 17
    • 4143134783 scopus 로고    scopus 로고
    • Finding predictive gene groups from microarray data
    • DOI 10.1016/j.jmva.2004.02.012, Multivariate Methods in Genomic Data Analysis
    • Dettling, M., and, Bhlmann, P. 2004. Finding predictive gene groups from microarray data. Journal of Multivariate Analysis, 90: 106-131. (Pubitemid 41137009)
    • (2004) Journal of Multivariate Analysis , vol.90 , Issue.SPEC. ISS. , pp. 106-131
    • Dettling, M.1    Buhlmann, P.2
  • 19
    • 37749039624 scopus 로고    scopus 로고
    • General signal processing and machine learning tools for BCI
    • Edited by: Dornhege, G. Millán, J. Hinterberger, T. McFarland, D. J. and Mller, K.-R. Cambridge, MA: MIT Press
    • Dornhege, G., Krauledat, M., Mller, K.-R., and, Blankertz, B. 2007. General signal processing and machine learning tools for BCI. In Towards brain-computer interfacing, Edited by: Dornhege, G., Millán, J., Hinterberger, T., McFarland, D. J. and Mller, K.-R. 207-233. Cambridge, MA: MIT Press.
    • (2007) Towards Brain-computer Interfacing , pp. 207-233
    • Dornhege, G.1    Krauledat, M.2    Mller, K.-R.3    Blankertz, B.4
  • 23
    • 70349964707 scopus 로고    scopus 로고
    • Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach
    • Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., and, Murphy, D. G. 2009. Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. Neuroimage, 49: 44-56.
    • (2009) Neuroimage , vol.49 , pp. 44-56
    • Ecker, C.1    Rocha-Rego, V.2    Johnston, P.3    Mourao-Miranda, J.4    Marquand, A.5    Daly, E.M.6    Murphy, D.G.7
  • 24
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron, B. 1983. Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the American Statistical Association,: 78316-78331.
    • (1983) Journal of the American Statistical Association , pp. 78316-78331
    • Efron, B.1
  • 25
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • Efron, B. 2004. The estimation of prediction error: Covariance penalties and cross-validation. Journal of the American Statistical Association,: 99619-642.
    • (2004) Journal of the American Statistical Association , pp. 99619-99642
    • Efron, B.1
  • 27
    • 34848872747 scopus 로고    scopus 로고
    • Infancy and autism: Progress, prospects, and challenge
    • Elsabbagh, M., and, Johnson, M. H. 2007. Infancy and autism: Progress, prospects, and challenge. Prog Brain Research, 164: 355-383.
    • (2007) Prog Brain Research , vol.164 , pp. 355-383
    • Elsabbagh, M.1    Johnson, M.H.2
  • 29
    • 0001904955 scopus 로고    scopus 로고
    • Event-related brain potentials: Methods, theory, and applications
    • 3rd, Edited by: Cacioppo, J. T. Tassinary, L. G. and Berntson, G. G. Cambridge, England: Cambridge University Press
    • Fabiani, M., Gratton, G., and, Federmeier, K. D. 2007. Event-related brain potentials: Methods, theory, and applications. In Handbook of psychophysiology, 3rd, Edited by: Cacioppo, J. T., Tassinary, L. G. and Berntson, G. G. 55-83. Cambridge, England: Cambridge University Press.
    • (2007) Handbook of Psychophysiology , pp. 55-83
    • Fabiani, M.1    Gratton, G.2    Federmeier, K.D.3
  • 30
    • 84862077775 scopus 로고    scopus 로고
    • The use of discriminant analysis to separate a study population by treatment subgroups in a clinical trial with a new pentapeptide antidepressant
    • Feighner, J. P., and, Sverdlov, L. 2001. The use of discriminant analysis to separate a study population by treatment subgroups in a clinical trial with a new pentapeptide antidepressant. Journal of Applied Research in Clinical and Experimental Therapeutics, 2 (1): 50-57.
    • (2001) Journal of Applied Research in Clinical and Experimental Therapeutics , vol.2 , Issue.1 , pp. 50-57
    • Feighner, J.P.1    Sverdlov, L.2
  • 35
    • 0039136604 scopus 로고    scopus 로고
    • Note on free lunches and cross-validation
    • Goutte, C. 1997. Note on free lunches and cross-validation. Neural Computation, 9: 1211-1215.
    • (1997) Neural Computation , vol.9 , pp. 1211-1215
    • Goutte, C.1
  • 36
    • 77956223468 scopus 로고    scopus 로고
    • Simultaneous variable selection and class fusion for high-dimensional linear discriminant analysis
    • Guo, J. 2010. Simultaneous variable selection and class fusion for high-dimensional linear discriminant analysis. Biostatistics, 11 (4): 599-608.
    • (2010) Biostatistics , vol.11 , Issue.4 , pp. 599-608
    • Guo, J.1
  • 37
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • DOI 10.1093/biostatistics/kxj035
    • Guo, Y., Hastie, T., and, Tibshirani, R. 2007. Regularized linear discriminant analysis and its applications in microarrays. Biostatistics, 8 (1): 86-100. (Pubitemid 44906104)
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 38
  • 39
    • 0042170067 scopus 로고    scopus 로고
    • Cortical specialisation for face processing: Face-sensitive event-related potential components in 3- and 12-month-old infants
    • DOI 10.1016/S1053-8119(03)00076-4
    • Halit, H., de Haan, M., and, Johnson, M. H. 2003. Cortical specialisation for face processing: Face-sensitive event-related potential components in 3-and 12-month-old infants. Neuroimage, 19: 1180-1193. (Pubitemid 36918254)
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 1180-1193
    • Halit, H.1    De Haan, M.2    Johnson, M.H.3
  • 44
    • 84862077300 scopus 로고    scopus 로고
    • Recording infant ERP data for cognitive research
    • Hoehl, S., and, Wahl, S. 2012. Recording infant ERP data for cognitive research. Developmental Neuropsychology, 37: 187-209.
    • (2012) Developmental Neuropsychology , vol.37 , pp. 187-209
    • Hoehl, S.1    Wahl, S.2
  • 46
    • 37349009294 scopus 로고    scopus 로고
    • A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification
    • DOI 10.1002/sim.2968
    • Jiang, W., and, Simon, R. 2007. A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Statistics in Medicine, 26: 5320-5334. (Pubitemid 350285115)
    • (2007) Statistics in Medicine , vol.26 , Issue.29 , pp. 5320-5334
    • Jiang, W.1    Simon, R.2
  • 47
    • 41649121369 scopus 로고    scopus 로고
    • Calculating confidence intervals for prediction error in microarray classification using resampling
    • Jiang, W., Varma, S., and, Simon, R. 2008. Calculating confidence intervals for prediction error in microarray classification using resampling. Statistical Applications in Genetics and Molecular Biology, 7 (1): 1-19.
    • (2008) Statistical Applications in Genetics and Molecular Biology , vol.7 , Issue.1 , pp. 1-19
    • Jiang, W.1    Varma, S.2    Simon, R.3
  • 49
    • 78049251267 scopus 로고    scopus 로고
    • A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy
    • Khodayari-Rostamabad, A., Hasey, G. M., Maccrimmon, D. J., Reilly, J. P., and, de Bruin, H. 2010. A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy. Clinical Neurophysiology, 121 (12): 1998-2006.
    • (2010) Clinical Neurophysiology , vol.121 , Issue.12 , pp. 1998-2006
    • Khodayari-Rostamabad, A.1    Hasey, G.M.2    MacCrimmon, D.J.3    Reilly, J.P.4    De Bruin, H.5
  • 50
    • 65449119595 scopus 로고    scopus 로고
    • The economic cost of autism in the UK
    • Knapp, M., Romeo, R., and, Beecham, J. 2009. The economic cost of autism in the UK. Autism, 13: 317-336.
    • (2009) Autism , vol.13 , pp. 317-336
    • Knapp, M.1    Romeo, R.2    Beecham, J.3
  • 53
    • 0031567751 scopus 로고    scopus 로고
    • Single trial variability within the P300 (250-500 ms) processing window in adolescents with attention deficit hyperactivity disorder
    • DOI 10.1016/S0165-1781(97)00107-8, PII S0165178197001078
    • Lazzaro, I., Anderson, J., Gordon, E., Clarke, S., Leong, J., and, Meares, R. 1997. Single trial variability within the P300 (250-500 ms) processing window in adolescents with attention deficit hyperactivity disorder. Psychiatry Research, 73 (1-2): 91-101. (Pubitemid 28032211)
    • (1997) Psychiatry Research , vol.73 , Issue.1-2 , pp. 91-101
    • Lazzaro, I.1    Anderson, J.2    Gordon, E.3    Clarke, S.4    Leong, J.5    Meares, R.6
  • 54
    • 34247179140 scopus 로고    scopus 로고
    • A review of classification algorithms for EEG-based brain-computer interfaces
    • DOI 10.1088/1741-2560/4/2/R01, PII S1741256007300050, R01
    • Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and, Arnaldi, B. 2007. A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4: R1-R13. doi: 10.1088/1741-2560/4/ 2/R01 (Pubitemid 46603810)
    • (2007) Journal of Neural Engineering , vol.4 , Issue.2
    • Lotte, F.1    Congedo, M.2    Lecuyer, A.3    Lamarche, F.4    Arnaldi, B.5
  • 56
    • 2142771369 scopus 로고    scopus 로고
    • Mining event-related brain dynamics
    • DOI 10.1016/j.tics.2004.03.008, PII S1364661304000816
    • Makeig, S., Debener, S., Onton, J., and, Delorme, A. 2004. Mining event-related brain dynamics. Trends in Cognitive Science, 8 (5): 204-210. (Pubitemid 38543249)
    • (2004) Trends in Cognitive Sciences , vol.8 , Issue.5 , pp. 204-210
    • Makeig, S.1    Debener, S.2    Onton, J.3    Delorme, A.4
  • 58
    • 15244340885 scopus 로고    scopus 로고
    • Independent component analysis of simulated ERP data
    • Edited by: Nakada, T. New York, NY: Elsevier
    • Makeig, S., Jung, T.-P., Ghahremani, D., and, Sejnowski, T. J. 2000. Independent component analysis of simulated ERP data. In Integrated human brain science, Edited by: Nakada, T. 1-24. New York, NY: Elsevier.
    • (2000) Integrated Human Brain Science , pp. 1-24
    • Makeig, S.1    Jung, T.-P.2    Ghahremani, D.3    Sejnowski, T.J.4
  • 61
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
    • Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., and, Mouro-Miranda, J. 2010. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. Neuroimage, 49 (3): 2178-2189.
    • (2010) Neuroimage , vol.49 , Issue.3 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    Brammer, M.3    Chu, C.4    Coen, S.5    Mouro-Miranda, J.6
  • 62
    • 0032517815 scopus 로고    scopus 로고
    • Validation and verification of regression in small data sets
    • DOI 10.1016/S0169-7439(98)00167-1, PII S0169743998001671
    • Martens, H. A., and, Dardenne, P. 1998. Validation and verification of regression in small data sets. Chemometrics and Intelligent Laboratory Systems, 44: 99-121. (Pubitemid 29016089)
    • (1998) Chemometrics and Intelligent Laboratory Systems , vol.44 , Issue.1-2 , pp. 99-121
    • Martens, H.A.1    Dardenne, P.2
  • 64
    • 60749137452 scopus 로고    scopus 로고
    • Electrophysiological correlates of word comprehension: Event-related potential (ERP) and independent component analysis (ICA)
    • Mehta, J., Jerger, S., Jerger, J., and, Martin, J. 2009. Electrophysiological correlates of word comprehension: event-related potential (ERP) and independent component analysis (ICA). International Journal of Audiology, 48 (1): 1-11.
    • (2009) International Journal of Audiology , vol.48 , Issue.1 , pp. 1-11
    • Mehta, J.1    Jerger, S.2    Jerger, J.3    Martin, J.4
  • 67
    • 0035373692 scopus 로고    scopus 로고
    • The use of brain electrophysiology techniques to study language: A basic guide for the beginning consumer of electrophysiology information
    • Molfese, D. L., Molfese, V. J., and, Kelly, S. 2001. The use of brain electrophysiology techniques to study language: a basic guide for the beginning consumer of electrophysiology information. Learning Disability, 24: 177-188.
    • (2001) Learning Disability , vol.24 , pp. 177-188
    • Molfese, D.L.1    Molfese, V.J.2    Kelly, S.3
  • 68
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • DOI 10.1093/bioinformatics/bti499
    • Molinaro, A. M., Simon, R., and, Pfeiffer, R. M. 2005. Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21 (15): 3301-3307. (Pubitemid 41418445)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 69
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data
    • DOI 10.1016/j.neuroimage.2005.06.070, PII S1053811905004787
    • Mourao-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., and, Stetter, M. 2005. Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on fMRI data. Neuroimage, 28: 980-995. (Pubitemid 41713632)
    • (2005) NeuroImage , vol.28 , Issue.4 , pp. 980-995
    • Mourao-Miranda, J.1    Bokde, A.L.W.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 70
    • 77954115013 scopus 로고    scopus 로고
    • Classification of ADHD patients on the basis of independent ERP components using a machine learning system
    • doi: 10.1186/1753-4631-4-S1-S1
    • Mller, A., Candrian, G., Kropotov, J. D., Ponomarev, V. A., and, Baschera, G. M. 2010. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomedical Physics, 4 (Suppl 1): S1 doi: 10.1186/1753-4631-4-S1-S1
    • (2010) Nonlinear Biomedical Physics , vol.4 , Issue.SUPPL. 1 , pp. 1
    • Mller, A.1    Candrian, G.2    Kropotov, J.D.3    Ponomarev, V.A.4    Baschera, G.M.5
  • 71
    • 36549029758 scopus 로고    scopus 로고
    • Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring
    • DOI 10.1016/j.jneumeth.2007.09.022, PII S0165027007004657, Brain-Computer Interface (BCIs)
    • Mller, K. R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., and, Blankertz, B. 2008. Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. Journal of Neuroscience Methods, 167: 82-90. (Pubitemid 350180089)
    • (2008) Journal of Neuroscience Methods , vol.167 , Issue.1 , pp. 82-90
    • Muller, K.-R.1    Tangermann, M.2    Dornhege, G.3    Krauledat, M.4    Curio, G.5    Blankertz, B.6
  • 72
    • 0002343912 scopus 로고
    • Differential effects of experience on the EEG and behavior of 6-month-old infants: Trends during repeated stimulus presentations
    • Nikkel, L., and, Karrer, R. 1994. Differential effects of experience on the EEG and behavior of 6-month-old infants: Trends during repeated stimulus presentations. Developmental Neuropsychology, 10: 1-11.
    • (1994) Developmental Neuropsychology , vol.10 , pp. 1-11
    • Nikkel, L.1    Karrer, R.2
  • 73
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • DOI 10.1038/nbt1206-1565, PII NBT12061565
    • Noble, W. S. 2006. What is a support vector machine?. Nature Biotechnology, 24: 1565-1567. (Pubitemid 44967481)
    • (2006) Nature Biotechnology , vol.24 , Issue.12 , pp. 1565-1567
    • Noble, W.S.1
  • 74
    • 33747894287 scopus 로고    scopus 로고
    • Imaging human EEG dynamics using independent component analysis
    • DOI 10.1016/j.neubiorev.2006.06.007, PII S0149763406000509, Methodological and Conceptual Advances in the Study of Brain-Behavior Dynamics: A Multivariate Lifespan Perspective
    • Onton, J., Westerfield, M., Townsend, J., and, Makeig, S. 2006. Imaging human EEG dynamics using independent component analysis. Neuroscience & Biobehavioral Reviews, 30 (6): 808-822. (Pubitemid 44292287)
    • (2006) Neuroscience and Biobehavioral Reviews , vol.30 , Issue.6 , pp. 808-822
    • Onton, J.1    Westerfield, M.2    Townsend, J.3    Makeig, S.4
  • 75
    • 70450228445 scopus 로고    scopus 로고
    • Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data
    • Pang, H., Tong, T., and, Zhao, H. 2009. Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data. Biometrics, 65 (4): 1021-1029.
    • (2009) Biometrics , vol.65 , Issue.4 , pp. 1021-1029
    • Pang, H.1    Tong, T.2    Zhao, H.3
  • 76
    • 34249039232 scopus 로고    scopus 로고
    • Graphical tools for quadratic discriminant analysis
    • DOI 10.1198/004017007000000074
    • Pardoe, I., Yin, X., and, Cook, R. D. 2007. Graphical tools for quadratic discriminant analysis. Technometrics, 49 (2): 172-183. (Pubitemid 46799918)
    • (2007) Technometrics , vol.49 , Issue.2 , pp. 172-183
    • Pardoe, I.1    Cook, R.D.2    Yin, X.3
  • 77
    • 35449001649 scopus 로고    scopus 로고
    • A comparison of generalized linear discriminant analysis algorithms
    • DOI 10.1016/j.patcog.2007.07.022, PII S0031320307003676, Feature Generation and Machine Learning for Robust Multimodal Biometrics
    • Park, C. H., and, Park, H. 2008. A comparison of generalized linear discriminant analysis algorithms. Pattern Recognition, 41 (3): 1083-1097. (Pubitemid 47632680)
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 1083-1097
    • Park, C.H.1    Park, H.2
  • 78
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Pereira, F., Mitchell, T., and, Botvinick, M. 2008. Machine learning classifiers and fMRI: A tutorial overview. Neuroimage, 5 (1): S199-209.
    • (2008) Neuroimage , vol.5 , Issue.1 , pp. 199-209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 81
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 http://www.R-project.org
    • (2012) R: A Language and Environment for Statistical Computing
  • 83
    • 39749196863 scopus 로고    scopus 로고
    • BCI competition III: Dataset II- ensemble of SVMs for BCI P300 speller
    • DOI 10.1109/TBME.2008.915728
    • Rakotomamonjy, A., and, Guigue, V. 2008. Competition III: Dataset II-ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical Engineering, 55: 1147-1154. (Pubitemid 351301245)
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , Issue.3 , pp. 1147-1154
    • Rakotomamonjy, A.1    Guigue, V.2
  • 85
    • 84862081294 scopus 로고    scopus 로고
    • Brain-behavior relations in infancy: Integrative approaches to examining infant looking behavior and event-related potentials
    • Reynolds, G. D., and, Guy, M. W. 2012. Brain-behavior relations in infancy: Integrative approaches to examining infant looking behavior and event-related potentials. Developmental Neuropsychology, 37: 210-225.
    • (2012) Developmental Neuropsychology , vol.37 , pp. 210-225
    • Reynolds, G.D.1    Guy, M.W.2
  • 86
    • 70349766051 scopus 로고    scopus 로고
    • Visual modifications on the P300 speller BCI paradigm
    • doi: 10.1088/1741-2560/6/4/046011 046011
    • Salvaris, M., and, Sepulveda, F. 2009. Visual modifications on the P300 speller BCI paradigm. Journal of Neural Engineering, 6 (046011): 1-8. doi: 10.1088/1741-2560/6/4/046011
    • (2009) Journal of Neural Engineering , vol.6 , pp. 1-8
    • Salvaris, M.1    Sepulveda, F.2
  • 88
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • Schlkopf, B., Smola, A., and, Mller, K. R. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10: 1299-1319. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 89
    • 0036963284 scopus 로고    scopus 로고
    • Theoretical and methodological implications of variability in infant brain response during a recognition memory paradigm
    • Snyder, K. A., Webb, S. J., and, Nelson, C. A. 2002. Theoretical and methodological implications of variability in infant brain response during a recognition memory paradigm. Infant Behavior and Development, 25: 466-449.
    • (2002) Infant Behavior and Development , vol.25 , pp. 466-449
    • Snyder, K.A.1    Webb, S.J.2    Nelson, C.A.3
  • 90
    • 29144450871 scopus 로고    scopus 로고
    • Averaging, detection, and classification of single-trial ERPs
    • Edited by: Handy, T. C. Cambridge, MA: The MIT Press
    • Spencer, K. M. 2005. Averaging, detection, and classification of single-trial ERPs. In Event-related potentials: A methods handbook, Edited by: Handy, T. C. 209-227. Cambridge, MA: The MIT Press.
    • (2005) Event-related Potentials: A Methods Handbook , pp. 209-227
    • Spencer, K.M.1
  • 91
    • 77549084070 scopus 로고    scopus 로고
    • Eye contact and emotional face processing in 6-month-old infants: Advanced statistical methods applied to event related potentials
    • Stahl, D., Parise, E., Hoehl, S., and, Striano, T. 2010. Eye contact and emotional face processing in 6-month-old infants: Advanced statistical methods applied to event related potentials. Brain and Development, 32 (4): 305-317.
    • (2010) Brain and Development , vol.32 , Issue.4 , pp. 305-317
    • Stahl, D.1    Parise, E.2    Hoehl, S.3    Striano, T.4
  • 92
    • 79959843381 scopus 로고    scopus 로고
    • Infant ERP amplitudes change over the course of an experimental session: Implications for cognitive processes and methodology
    • Stets, M., and, Reid, V. M. 2011. Infant ERP amplitudes change over the course of an experimental session: Implications for cognitive processes and methodology. Brain and Development, 33 (7): 558-568.
    • (2011) Brain and Development , vol.33 , Issue.7 , pp. 558-568
    • Stets, M.1    Reid, V.M.2
  • 93
    • 84862103168 scopus 로고    scopus 로고
    • A meta-analysis investigating factors underlying attrition rates in infant ERP studies
    • Stets, M., Stahl, D., and, Reid, V. M. 2012. A meta-analysis investigating factors underlying attrition rates in infant ERP studies. Developmental Neuropsychology, 37: 226-252.
    • (2012) Developmental Neuropsychology , vol.37 , pp. 226-252
    • Stets, M.1    Stahl, D.2    Reid, V.M.3
  • 97
    • 36549072440 scopus 로고    scopus 로고
    • Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data
    • Tai, F., and, Pan, W. 2008. Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data. Bioinformatics, 23 (23): 3170-3177.
    • (2008) Bioinformatics , vol.23 , Issue.23 , pp. 3170-3177
    • Tai, F.1    Pan, W.2
  • 98
    • 20744458414 scopus 로고    scopus 로고
    • The use of event-related potentials in the study of early cognitive development
    • DOI 10.1002/icd.353
    • Thierry, G. 2005. The use of event-related potentials in the study of early cognitive development. Infant and Child Development, 14: 85-94. (Pubitemid 40854836)
    • (2005) Infant and Child Development , vol.14 , Issue.1 , pp. 85-94
    • Thierry, G.1
  • 101
    • 33644809211 scopus 로고    scopus 로고
    • Adaptive on-line classification for EEG-based brain computer interfaces with AAR parameters and band power estimates
    • Vidaurre, C., Schlgl, A., Cabeza, R., Scherer, R., and, Pfurtscheller, G. 2005. Adaptive on-line classification for EEG-based brain computer interfaces with AAR parameters and band power estimates. Biomedical Engineering, 50 (11): 350-354.
    • (2005) Biomedical Engineering , vol.50 , Issue.11 , pp. 350-354
    • Vidaurre, C.1    Schlgl, A.2    Cabeza, R.3    Scherer, R.4    Pfurtscheller, G.5
  • 103
    • 33746454738 scopus 로고    scopus 로고
    • KlaR analyzing German business cycles
    • Edited by: Baier, D. Decker, R. and Schmidt-Thieme, L. Berlin, Germany: Springer-Verlag
    • Weihs, C., Ligges, U., Luebke, K., and, Raabe, N. 2005. klaR analyzing German business cycles. In Data analysis and decision support, Edited by: Baier, D., Decker, R. and Schmidt-Thieme, L. 335-343. Berlin, Germany: Springer-Verlag.
    • (2005) Data Analysis and Decision Support , pp. 335-343
    • Weihs, C.1    Ligges, U.2    Luebke, K.3    Raabe, N.4
  • 104
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • Weiss, G. 2008. Mining with rarity: A unifying framework. SIGKDD Explorations, 6 (1): 7-19.
    • (2008) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.1
  • 105
    • 78649704327 scopus 로고    scopus 로고
    • A brief introduction to the use of event-related potentials in studies of perception and attention
    • Woodman, G. F. 2010. A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception and Psychophysics, 72 (8): 2013-2046.
    • (2010) Attention, Perception and Psychophysics , vol.72 , Issue.8 , pp. 2013-2046
    • Woodman, G.F.1
  • 107
    • 37049020236 scopus 로고    scopus 로고
    • Classifying EEG for brain computer interfaces using Gaussian processes
    • DOI 10.1016/j.patrec.2007.10.009, PII S0167865507003303
    • Zhong, M., Lotte, F., Girolami, M., and, Lécuyer, A. 2008. Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recognition Letters, 29: 354-359. (Pubitemid 350250917)
    • (2008) Pattern Recognition Letters , vol.29 , Issue.3 , pp. 354-359
    • Zhong, M.1    Lotte, F.2    Girolami, M.3    Lecuyer, A.4
  • 109
    • 70349999415 scopus 로고    scopus 로고
    • Gene ranking and biomarker discovery under correlation
    • Zuber, V., and, Strimmer, K. 2009. Gene ranking and biomarker discovery under correlation. Bioinformatics, 25 (20): 2700-2707.
    • (2009) Bioinformatics , vol.25 , Issue.20 , pp. 2700-2707
    • Zuber, V.1    Strimmer, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.