-
1
-
-
84903447821
-
Expanded human meniscusderived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair
-
Freymann, U., et al., Expanded human meniscusderived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair. Acta Biomaterialia, (0).
-
Acta Biomaterialia
-
-
Freymann, U.1
-
2
-
-
0034672872
-
Scaffolds in tissue engineering bone and cartilage
-
Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-43.
-
(2000)
Biomaterials
, vol.21
, Issue.24
, pp. 2529-2543
-
-
Hutmacher, D.W.1
-
3
-
-
41949105727
-
Electrospinning of highly porous scaffolds for cartilage regeneration
-
DOI 10.1021/bm701225a
-
Thorvaldsson, A., et al., Electrospinning of Highly Porous Scaffolds for Cartilage Regeneration. Biomacromolecules, 2008. 9(3): p. 1044-1049. (Pubitemid 351560500)
-
(2008)
Biomacromolecules
, vol.9
, Issue.3
, pp. 1044-1049
-
-
Thorvaldsson, A.1
Stenhamre, H.2
Gatenholm, P.3
Walkenstrom, P.4
-
4
-
-
77949667869
-
The role of tissue engineering in articular cartilage repair and regeneration
-
Zhang, L., J. Hu, and Kyriacos A. Athanasiou, TheRole of Tissue Engineering in Articular Cartilage Repair and Regeneration. Critical Reviews in Biomedical Engineering, 2009. 37(1-2): p. 1-57.
-
(2009)
Critical Reviews in Biomedical Engineering
, vol.37
, Issue.1-2
, pp. 1-57
-
-
Zhang, L.1
Hu, J.2
Athanasiou, K.A.3
-
5
-
-
84903449601
-
Cartilage injury and repair:Current treatment of cartilage injuries
-
Benjamin, C., Cartilage Injury and repair:Current treatment of cartilage injuries. Knol, 2008.
-
(2008)
Knol
-
-
Benjamin, C.1
-
6
-
-
77549086332
-
Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model
-
Toyokawa, N., et al., Electrospun Synthetic Polymer Scaffold for Cartilage Repair Without Cultured Cells in an Animal Model. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2010. 26(3): p. 375-383.
-
(2010)
Arthroscopy: The Journal of Arthroscopic & Related Surgery
, vol.26
, Issue.3
, pp. 375-383
-
-
Toyokawa, N.1
-
7
-
-
8844263768
-
Nano-fibrous scaffolds fortissue engineering
-
Smith, L.A. and P.X. Ma, Nano-fibrous scaffolds fortissue engineering. Colloids Surf B Biointerfaces, 2004. 39(3): p. 125-31.
-
(2004)
Colloids Surf B Biointerfaces
, vol.39
, Issue.3
, pp. 125-131
-
-
Smith, L.A.1
Ma, P.X.2
-
8
-
-
80051930869
-
Electrospun composite nanofibers for tissue regeneration
-
Prabhakaran, M.P., L. Ghasemi-Mobarakeh, and S. Ramakrishna, Electrospun Composite Nanofibers for Tissue Regeneration. Journal of Nanoscience and Nanotechnology, 2011. 11(4): p. 3039-3057.
-
(2011)
Journal of Nanoscience and Nanotechnology
, vol.11
, Issue.4
, pp. 3039-3057
-
-
Prabhakaran, M.P.1
Ghasemi-Mobarakeh, L.2
Ramakrishna, S.3
-
9
-
-
80054062393
-
Biomimetic nanofibrous scaffolds for bone tissue engineering
-
Holzwarth, J.M. and P.X. Ma, Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 2011. 32(36): p. 9622-9.
-
(2011)
Biomaterials
, vol.32
, Issue.36
, pp. 9622-9629
-
-
Holzwarth, J.M.1
Ma, P.X.2
-
10
-
-
78349311451
-
Fluorescent PLLA-nanodiamond composites for bone tissue engineering
-
Zhang, Q., et al., Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials, 2011. 32(1): p. 87-94.
-
(2011)
Biomaterials
, vol.32
, Issue.1
, pp. 87-94
-
-
Zhang, Q.1
-
11
-
-
79951598449
-
Three-Dimensional Hierarchical Composite Scaffolds Consisting of Polycaprolactone, β-Tricalcium Phosphate, and Collagen Nanofibers: Fabrication, Physical Properties, and in Vitro Cell Activity for Bone Tissue Regeneration
-
Yeo, M., H. Lee, and G. Kim, Three-Dimensional Hierarchical Composite Scaffolds Consisting of Polycaprolactone, β-Tricalcium Phosphate, and Collagen Nanofibers: Fabrication, Physical Properties, and In Vitro Cell Activity for Bone Tissue Regeneration. Biomacromolecules, 2010. 12(2): p. 502-510.
-
(2010)
Biomacromolecules
, vol.12
, Issue.2
, pp. 502-510
-
-
Yeo, M.1
Lee, H.2
Kim, G.3
-
12
-
-
77950207519
-
A novel small animal model for biocompatibility assessment of polymeric materials for use in prosthetic heart valves
-
Wang, Q., et al., A novel small animal model for biocompatibility assessment of polymeric materials for use in prosthetic heart valves. J Biomed Mater Res A, 2010. 93(2): p. 442-53.
-
(2010)
J Biomed Mater Res A
, vol.93
, Issue.2
, pp. 442-453
-
-
Wang, Q.1
-
13
-
-
84861698425
-
Thermal inkjet printing in tissue engineering and regenerative medicine
-
Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul, 2012. 6(2): p. 149-55.
-
(2012)
Recent Pat Drug Deliv Formul
, vol.6
, Issue.2
, pp. 149-155
-
-
Cui, X.1
-
14
-
-
84861826955
-
Direct human cartilage repair using three-dimensional bioprinting technology
-
Cui, X., et al., Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A, 2012. 18(11-12): p. 1304-12.
-
(2012)
Tissue Eng Part A
, vol.18
, Issue.11-12
, pp. 1304-1312
-
-
Cui, X.1
-
15
-
-
84867303641
-
Recent advances in 3D printing of tissue engineering scaffolds
-
Lee, M. and B.M. Wu, Recent Advances in 3D Printing of Tissue Engineering Scaffolds. Methods Mol Biol, 2012. 868: p. 257-67.
-
(2012)
Methods Mol Biol
, vol.868
, pp. 257-267
-
-
Lee, M.1
Wu, B.M.2
-
16
-
-
84868158132
-
Scaffold-free inkjet printing of threedimensional zigzag cellular tubes
-
Xu, C., et al., Scaffold-free inkjet printing of threedimensional zigzag cellular tubes. Biotechnol Bioeng, 2012.
-
(2012)
Biotechnol Bioeng
-
-
Xu, C.1
-
17
-
-
84855396802
-
Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
-
Fedorovich, N.E., et al., Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods, 2012. 18(1): p. 33-44.
-
(2012)
Tissue Eng Part C Methods
, vol.18
, Issue.1
, pp. 33-44
-
-
Fedorovich, N.E.1
-
18
-
-
84903479180
-
Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals
-
Dormer, N.H., et al., Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. Journal of Biomedical Materials Research Part A, 2011: p. n/a-n/a.
-
(2011)
Journal of Biomedical Materials Research Part A
-
-
Dormer, N.H.1
-
19
-
-
34147137183
-
In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses
-
DOI 10.1016/j.biomaterials.2007.03.018, PII S0142961207002311
-
Abou Neel, E.A., et al., In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials, 2007. 28(19): p. 2967-77. (Pubitemid 46560873)
-
(2007)
Biomaterials
, vol.28
, Issue.19
, pp. 2967-2977
-
-
Abou Neel, E.A.1
Mizoguchi, T.2
Ito, M.3
Bitar, M.4
Salih, V.5
Knowles, J.C.6
-
20
-
-
82255161877
-
Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals
-
Ahn HJ, K.K., Kim G, Moon E, Yang SS, Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of Free Radicals. PLoS ONE, 2011. 6(11): p. 28154.
-
(2011)
PLoS ONE
, vol.6
, Issue.11
, pp. 28154
-
-
Ahn, H.J.K.K.1
Kim, G.2
Moon, E.3
Yang, S.S.4
-
21
-
-
84870371579
-
Inactivation of encapsulated cells and their therapeutic effects by means of TGL triplefusion reporter/biosafety gene
-
Santos, E., et al., Inactivation of encapsulated cells and their therapeutic effects by means of TGL triplefusion reporter/biosafety gene. Biomaterials, 2013. 34(4): p. 1442-51.
-
(2013)
Biomaterials
, vol.34
, Issue.4
, pp. 1442-1451
-
-
Santos, E.1
-
22
-
-
84868481408
-
The induction of cytokines by polycation containing microspheres by a complement dependent mechanism
-
Rokstad, A.M., et al., The induction of cytokines by polycation containing microspheres by a complement dependent mechanism. Biomaterials, 2013. 34(3): p. 621-30.
-
(2013)
Biomaterials
, vol.34
, Issue.3
, pp. 621-630
-
-
Rokstad, A.M.1
-
23
-
-
84891477623
-
Evaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine
-
Sibov, T.T., et al., Evaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine. Einstein (Sao Paulo), 2012. 10(2): p. 180-8.
-
(2012)
Einstein (Sao Paulo)
, vol.10
, Issue.2
, pp. 180-188
-
-
Sibov, T.T.1
-
24
-
-
0028110431
-
Chondrogenesis of neural crest cells: Effect of poly-L-lysine and bone extract
-
DOI 10.1046/j.1432-0436.1994.5810019.x
-
Ekanayake, S. and R.S. Tuan, Chondrogenesis of neural crest cells: effect of poly-L-lysine and bone extract. Differentiation, 1994. 58(1): p. 19-27. (Pubitemid 24361123)
-
(1994)
Differentiation
, vol.58
, Issue.1
, pp. 19-27
-
-
Ekanayake, S.1
Tuan, R.S.2
-
25
-
-
44849086691
-
Enhanced chondrocyte densities on carbon nanotube composites: The combined role of nanosurface roughness and electrical stimulation
-
DOI 10.1002/jbm.a.31803
-
Khang, D., G.E. Park, and T.J. Webster, Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J Biomed Mater Res A, 2008. 86(1): p. 253-60. (Pubitemid 351799506)
-
(2008)
Journal of Biomedical Materials Research - Part A
, vol.86
, Issue.1
, pp. 253-260
-
-
Khang, D.1
Park, G.E.2
Webster, T.J.3
-
26
-
-
84862992517
-
Multi-walled carbon nanotubes induceapoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway
-
Ye, S., et al., Multi-walled carbon nanotubes induceapoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway. J Nanosci Nanotechnol, 2012. 12(3): p. 2101-12.
-
(2012)
J Nanosci Nanotechnol
, vol.12
, Issue.3
, pp. 2101-2112
-
-
Ye, S.1
-
27
-
-
84864442253
-
Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes
-
Ogihara, N., et al., Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine (Lond), 2012. 7(7): p. 981-93.
-
(2012)
Nanomedicine (Lond)
, vol.7
, Issue.7
, pp. 981-993
-
-
Ogihara, N.1
-
28
-
-
84864555389
-
Biomimetic 3D nanocrystalline hydroxyapatite and magnetically synthesized SWCNT chitosan nanocomposite for bone regeneration
-
Im O., L.J., Wang M., Zhang L., Keidar M., Biomimetic 3D Nanocrystalline Hydroxyapatite and Magnetically Synthesized SWCNT Chitosan Nanocomposite for Bone Regeneration. International Journal of Nanomedicine, 2012. 7: p. 2087-2099
-
(2012)
International Journal of Nanomedicine
, vol.7
, pp. 2087-2099
-
-
Im, O.L.J.1
Wang, M.2
Zhang, L.3
Keidar, M.4
-
29
-
-
79956282203
-
Effect of nanotubes and apatite on growth factor release from PLLA scaffolds
-
van der Zande, M., et al., Effect of nanotubes and apatite on growth factor release from PLLA scaffolds. J Tissue Eng Regen Med, 2011. 5(6): p. 476-82.
-
(2011)
J Tissue Eng Regen Med
, vol.5
, Issue.6
, pp. 476-482
-
-
Van Der Zande, M.1
-
30
-
-
82955163884
-
Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films
-
Yu, B.Y., et al., Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films. J Biomater Sci Polym Ed, 2012. 23(1-4): p. 1- 26.
-
(2012)
J Biomater Sci Polym Ed
, vol.23
, Issue.1-4
, pp. 1-26
-
-
Yu, B.Y.1
-
31
-
-
84862663404
-
Guided self-assembly of nanostructured titanium oxide
-
Wang, B., et al., Guided self-assembly of nanostructured titanium oxide. Nanotechnology, 2012. 23(7): p. 075706.
-
(2012)
Nanotechnology
, vol.23
, Issue.7
, pp. 075706
-
-
Wang, B.1
-
32
-
-
84870360298
-
Nanofibrillar scaffolds inducepreferential activation of Rho GTPases in cerebralcortical astrocytes
-
Tiryaki, V.M., et al., Nanofibrillar scaffolds inducepreferential activation of Rho GTPases in cerebralcortical astrocytes. Int J Nanomedicine, 2012. 7: p. 3891-905.
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 3891-3905
-
-
Tiryaki, V.M.1
-
33
-
-
77951213989
-
Carbon nanotube reinforced polylactide-caprolactone copolymer: Mechanical strengthening and interaction with human osteoblasts in vitro
-
Lahiri, D., et al., Carbon nanotube reinforced polylactide-caprolactone copolymer: mechanical strengthening and interaction with human osteoblasts in vitro. ACS Appl Mater Interfaces, 2009. 1(11): p. 2470-6.
-
(2009)
ACS Appl Mater Interfaces
, vol.1
, Issue.11
, pp. 2470-2476
-
-
Lahiri, D.1
-
34
-
-
77951252777
-
Stem cell plasticity, osteogenic differentiation and the third dimension
-
Rottmar, M., et al., Stem cell plasticity, osteogenic differentiation and the third dimension. J Mater Sci Mater Med, 2010. 21(3): p. 999-1004.
-
(2010)
J Mater Sci Mater Med
, vol.21
, Issue.3
, pp. 999-1004
-
-
Rottmar, M.1
-
35
-
-
62349140447
-
Neurite outgrowth at the interface of 2D and 3D growth environments
-
Kofron, C.M., V.J. Fong, and D. Hoffman-Kim, Neurite outgrowth at the interface of 2D and 3D growth environments. J Neural Eng, 2009. 6(1): p. 016002.
-
(2009)
J Neural Eng
, vol.6
, Issue.1
, pp. 016002
-
-
Kofron, C.M.1
Fong, V.J.2
Hoffman-Kim, D.3
-
36
-
-
84859135465
-
One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis
-
Costa, D.O., S.J. Dixon, and A.S. Rizkalla, One- and Three-Dimensional Growth of Hydroxyapatite Nanowires during Sol-Gel-Hydrothermal Synthesis. ACS Appl Mater Interfaces, 2012.
-
(2012)
ACS Appl Mater Interfaces
-
-
Costa, D.O.1
Dixon, S.J.2
Rizkalla, A.S.3
-
37
-
-
84876231038
-
Three- dimensional printing of soy protein scaffolds for tissue regeneration
-
Chien, K.B., E. Makridakis, and R.N. Shah, Three- Dimensional Printing of Soy Protein Scaffolds for Tissue Regeneration. Tissue Eng Part C Methods, 2012.
-
(2012)
Tissue Eng Part C Methods
-
-
Chien, K.B.1
Makridakis, E.2
Shah, R.N.3
-
38
-
-
84864007688
-
Slits affect the timely migration of neural crest cells via Robo receptor
-
Giovannone, D., et al., Slits affect the timely migration of neural crest cells via Robo receptor. Dev Dyn, 2012. 241(8): p. 1274-88.
-
(2012)
Dev Dyn
, vol.241
, Issue.8
, pp. 1274-1288
-
-
Giovannone, D.1
-
39
-
-
84869222879
-
Use of fast conformational sampling to improve the characterization of VEGF Apeptide interactions
-
Wu, G., K. Han, and F. Lv, Use of fast conformational sampling to improve the characterization of VEGF Apeptide interactions. J Theor Biol, 2013. 317: p. 293- 300.
-
(2013)
J Theor Biol
, vol.317
, pp. 293-300
-
-
Wu, G.1
Han, K.2
Lv, F.3
-
40
-
-
84860132805
-
Structural and Functional Characterization of Two Alternative Splicing Variants of Mouse Endothelial Cell-Specific Chemotaxis Regulator (ECSCR)
-
Wu, W., et al., Structural and Functional Characterization of Two Alternative Splicing Variants of Mouse Endothelial Cell-Specific Chemotaxis Regulator (ECSCR). Int J Mol Sci, 2012. 13(4): p. 4920-36.
-
(2012)
Int J Mol Sci
, vol.13
, Issue.4
, pp. 4920-4936
-
-
Wu, W.1
-
41
-
-
84866133421
-
Enhanced endothelialization of a new stent polymer through surface enhancement and incorporation of growth factor-delivering microparticles
-
Xu, H., et al., Enhanced endothelialization of a new stent polymer through surface enhancement and incorporation of growth factor-delivering microparticles. J Cardiovasc Transl Res, 2012. 5(4): p. 519-27.
-
(2012)
J Cardiovasc Transl Res
, vol.5
, Issue.4
, pp. 519-527
-
-
Xu, H.1
|