메뉴 건너뛰기




Volumn 167, Issue , 2014, Pages 206-213

Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase

Author keywords

Enzyme immobilization; Hydrolysis; Sugarcane bagasse; Glucosidase

Indexed keywords

BAGASSE; HYDROLYSIS; SACCHARIFICATION;

EID: 84903445144     PISSN: 09608524     EISSN: 18732976     Source Type: Journal    
DOI: 10.1016/j.biortech.2014.06.021     Document Type: Article
Times cited : (62)

References (24)
  • 2
    • 84883684127 scopus 로고    scopus 로고
    • Covalent immobilization of beta-glucosidase on magnetic particles for lignocellulose hydrolysis
    • Alftren J., Hobley T.J. Covalent immobilization of beta-glucosidase on magnetic particles for lignocellulose hydrolysis. Appl. Biochem. Biotechnol. 2013, 169:2076-2087.
    • (2013) Appl. Biochem. Biotechnol. , vol.169 , pp. 2076-2087
    • Alftren, J.1    Hobley, T.J.2
  • 4
    • 14744272350 scopus 로고
    • Cloning and amplification of the gene encoding an extracellular beta-glucosidase from Trichoderma reesei - evidence for improved rates of saccharification of cellulosic substrates
    • Barnett C.C., Berka R.M., Fowler T. Cloning and amplification of the gene encoding an extracellular beta-glucosidase from Trichoderma reesei - evidence for improved rates of saccharification of cellulosic substrates. Biotechnology 1991, 9:562-567.
    • (1991) Biotechnology , vol.9 , pp. 562-567
    • Barnett, C.C.1    Berka, R.M.2    Fowler, T.3
  • 6
    • 0024677047 scopus 로고
    • Stabilization of enzymes by multipoint covalent attachment to agarose aldehyde gels - borohydride reduction of trypsin agarose derivatives
    • Blanco R.M., Guisan J.M. Stabilization of enzymes by multipoint covalent attachment to agarose aldehyde gels - borohydride reduction of trypsin agarose derivatives. Enzyme Microb. Technol. 1989, 11:360-366.
    • (1989) Enzyme Microb. Technol. , vol.11 , pp. 360-366
    • Blanco, R.M.1    Guisan, J.M.2
  • 7
    • 0017184389 scopus 로고
    • Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding
    • Bradford M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72:248-254.
    • (1976) Anal. Biochem. , vol.72 , pp. 248-254
    • Bradford, M.1
  • 10
    • 0024029957 scopus 로고
    • Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes
    • Guisan J.M. Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzyme Microb. Technol. 1988, 10:375-382.
    • (1988) Enzyme Microb. Technol. , vol.10 , pp. 375-382
    • Guisan, J.M.1
  • 11
    • 84873701808 scopus 로고    scopus 로고
    • Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials
    • Liu Z.L., Weber S.A., Cotta M.A. Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials. Bioenergy Res. 2012, 6:65-74.
    • (2012) Bioenergy Res. , vol.6 , pp. 65-74
    • Liu, Z.L.1    Weber, S.A.2    Cotta, M.A.3
  • 13
    • 84859635359 scopus 로고    scopus 로고
    • Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process
    • Macrelli S., Mogensen J., Zacchi G. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol. Biofuels 2012, 5:1-18.
    • (2012) Biotechnol. Biofuels , vol.5 , pp. 1-18
    • Macrelli, S.1    Mogensen, J.2    Zacchi, G.3
  • 14
    • 0023435073 scopus 로고
    • Single-step unimolecular non-1st-order enzyme deactivation kinetics
    • Sadana A., Henley J. Single-step unimolecular non-1st-order enzyme deactivation kinetics. Biotechnol. Bioeng. 1987, 30:717-723.
    • (1987) Biotechnol. Bioeng. , vol.30 , pp. 717-723
    • Sadana, A.1    Henley, J.2
  • 15
    • 78651086201 scopus 로고    scopus 로고
    • Covalent immobilization of beta-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles
    • Singh R.K., Zhang Y.W., Nguyen N.P.T., Jeya M., Lee J.K. Covalent immobilization of beta-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl. Microbiol. Biotechnol. 2011, 89:337-344.
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 337-344
    • Singh, R.K.1    Zhang, Y.W.2    Nguyen, N.P.T.3    Jeya, M.4    Lee, J.K.5
  • 16
    • 84870952001 scopus 로고    scopus 로고
    • Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production
    • Singhania R.R., Patel A.K., Sukumaran R.K., Larroche C., Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 2013, 127:500-507.
    • (2013) Bioresour. Technol. , vol.127 , pp. 500-507
    • Singhania, R.R.1    Patel, A.K.2    Sukumaran, R.K.3    Larroche, C.4    Pandey, A.5
  • 18
    • 13244264802 scopus 로고    scopus 로고
    • Kinetic model of the hydrolysis of polypeptides catalyzed by Alcalase((R)) immobilized on 10% glyoxyl-agarose
    • Tardioli P.W., Sousa R.S., Giordano R.C., Giordano R.L.C. Kinetic model of the hydrolysis of polypeptides catalyzed by Alcalase((R)) immobilized on 10% glyoxyl-agarose. Enzyme Microb. Technol. 2005, 36:555-564.
    • (2005) Enzyme Microb. Technol. , vol.36 , pp. 555-564
    • Tardioli, P.W.1    Sousa, R.S.2    Giordano, R.C.3    Giordano, R.L.C.4
  • 19
    • 78650237776 scopus 로고    scopus 로고
    • Immobilization-stabilization of glucoamylase: chemical modification of the enzyme surface followed by covalent attachment on highly activated glyoxyl-agarose supports
    • Tardioli P.W., Vieira M.F., Vieira A.M.S., Zanin G.M., Betancor L., Mateo C., Fernandez-Lorente G., Guisan J.M. Immobilization-stabilization of glucoamylase: chemical modification of the enzyme surface followed by covalent attachment on highly activated glyoxyl-agarose supports. Process Biochem. 2011, 46:409-412.
    • (2011) Process Biochem. , vol.46 , pp. 409-412
    • Tardioli, P.W.1    Vieira, M.F.2    Vieira, A.M.S.3    Zanin, G.M.4    Betancor, L.5    Mateo, C.6    Fernandez-Lorente, G.7    Guisan, J.M.8
  • 20
    • 33144488261 scopus 로고    scopus 로고
    • Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis
    • Tu M.B., Zhang X., Kurabi A., Gilkes N., Mabee W., Saddler J. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol. Lett. 2006, 28:151-156.
    • (2006) Biotechnol. Lett. , vol.28 , pp. 151-156
    • Tu, M.B.1    Zhang, X.2    Kurabi, A.3    Gilkes, N.4    Mabee, W.5    Saddler, J.6
  • 21
    • 84876474057 scopus 로고    scopus 로고
    • Immobilization of beta-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis
    • Verma M.L., Chaudhary R., Tsuzuki T., Barrow C.J., Puri M. Immobilization of beta-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour. Technol. 2013, 135:2-6.
    • (2013) Bioresour. Technol. , vol.135 , pp. 2-6
    • Verma, M.L.1    Chaudhary, R.2    Tsuzuki, T.3    Barrow, C.J.4    Puri, M.5
  • 22
  • 23
    • 70349573908 scopus 로고    scopus 로고
    • Influence of silica-derived nano-supporters on cellobiase after immobilization
    • Wang P., Hu X.K., Cook S., Hwang H.M. Influence of silica-derived nano-supporters on cellobiase after immobilization. Appl. Biochem. Biotechnol. 2009, 158:88-96.
    • (2009) Appl. Biochem. Biotechnol. , vol.158 , pp. 88-96
    • Wang, P.1    Hu, X.K.2    Cook, S.3    Hwang, H.M.4
  • 24
    • 84878020099 scopus 로고    scopus 로고
    • Immobilized beta-glucosidase on magnetic chitosan microspheres for hydrolysis of straw cellulose
    • Zheng P., Wang J., Lu C., Xu Y., Sun Z.H. Immobilized beta-glucosidase on magnetic chitosan microspheres for hydrolysis of straw cellulose. Process Biochem. 2013, 48:683-687.
    • (2013) Process Biochem. , vol.48 , pp. 683-687
    • Zheng, P.1    Wang, J.2    Lu, C.3    Xu, Y.4    Sun, Z.H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.