메뉴 건너뛰기




Volumn 24, Issue 6, 2014, Pages 880-891

Nonlinear process monitoring and fault isolation using extended maximum variance unfolding

Author keywords

Fault isolation; Manifold learning; Maximum variance unfolding; Nonlinear; Process monitoring

Indexed keywords

NUMERICAL METHODS; PROCESS CONTROL; PROCESS MONITORING;

EID: 84903273173     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2014.04.004     Document Type: Article
Times cited : (41)

References (37)
  • 1
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • J. Jackson, and G. Mudholkar Control procedures for residuals associated with principal component analysis Technometrics 1979 341 349
    • (1979) Technometrics , pp. 341-349
    • Jackson, J.1    Mudholkar, G.2
  • 2
    • 0025514444 scopus 로고
    • A theoretical basis for the use of principal component models for monitoring multivariate processes
    • B. Wise, N. Ricker, D. Veltkamp, and B. Kowalski A theoretical basis for the use of principal component models for monitoring multivariate processes Process Control Qual. 1 1990 41 51
    • (1990) Process Control Qual. , vol.1 , pp. 41-51
    • Wise, B.1    Ricker, N.2    Veltkamp, D.3    Kowalski, B.4
  • 3
    • 0029357005 scopus 로고
    • Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS
    • T. Kourti, P. Nomikos, and J. MacGregor Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS J. Process Control 5 1995 277 284
    • (1995) J. Process Control , vol.5 , pp. 277-284
    • Kourti, T.1    Nomikos, P.2    Macgregor, J.3
  • 4
    • 0030127409 scopus 로고    scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continuous processes
    • A. Raich, and A. Cinar Statistical process monitoring and disturbance diagnosis in multivariable continuous processes AIChE J. 42 1996 995 1009
    • (1996) AIChE J. , vol.42 , pp. 995-1009
    • Raich, A.1    Cinar, A.2
  • 5
    • 0030105341 scopus 로고    scopus 로고
    • Process performance monitoring using multivariate statistical process control
    • E. Martin, A. Morris, and J. Zhang Process performance monitoring using multivariate statistical process control IEE Proc. Contr. Theory Appl. 143 1996 132 144
    • (1996) IEE Proc. Contr. Theory Appl. , vol.143 , pp. 132-144
    • Martin, E.1    Morris, A.2    Zhang, J.3
  • 6
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M.A. Kramer Nonlinear principal component analysis using autoassociative neural networks AIChE J. 37 1991 233 243
    • (1991) AIChE J. , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 7
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis - Based on principal curves and neural networks
    • D. Dong, and T. McAvoy Nonlinear principal component analysis - based on principal curves and neural networks Comput. Chem. Eng. 20 1996 65 78
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.2
  • 8
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 9
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • J. Lee, C. Yoo, S. Choi, P. Vanrolleghem, and I. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.1    Yoo, C.2    Choi, S.3    Vanrolleghem, P.4    Lee, I.5
  • 10
    • 67349265618 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on maximum variance unfolding projections
    • J.D. Shao, and G. Rong Nonlinear process monitoring based on maximum variance unfolding projections Expert Syst. Appl. 36 2009 11332 11340
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11332-11340
    • Shao, J.D.1    Rong, G.2
  • 11
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 2000 2323 2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 12
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. De Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 2000 2319 2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 13
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 2003 1373 1396
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 15
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K.Q. Weinberger, and L.K. Saul Unsupervised learning of image manifolds by semidefinite programming Int. J. Comput. Vis. 70 2006 77 90
    • (2006) Int. J. Comput. Vis. , vol.70 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 16
    • 85156202169 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • V. Silva, and J.B. Tenenbaum Global versus local methods in nonlinear dimensionality reduction Adv. Neural Inf. Process. Syst. 15 2002 705 712
    • (2002) Adv. Neural Inf. Process. Syst. , vol.15 , pp. 705-712
    • Silva, V.1    Tenenbaum, J.B.2
  • 18
    • 0033295981 scopus 로고    scopus 로고
    • CSDP, a C library for semidefinite programming
    • B. Borchers CSDP, a C library for semidefinite programming Optim. Methods Softw. 11 1999 613 623
    • (1999) Optim. Methods Softw. , vol.11 , pp. 613-623
    • Borchers, B.1
  • 19
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone Cross-validatory choice and assessment of statistical predictions J. R. Stat. Soc. Series B Stat. Methodol. 36 1974 111 147
    • (1974) J. R. Stat. Soc. Series B Stat. Methodol. , vol.36 , pp. 111-147
    • Stone, M.1
  • 20
    • 0031153979 scopus 로고    scopus 로고
    • Process monitoring using non-linear statistical techniques
    • J. Zhang, E. Martin, and A. Morris Process monitoring using non-linear statistical techniques Chem. Eng. J. 67 1997 181 189
    • (1997) Chem. Eng. J. , vol.67 , pp. 181-189
    • Zhang, J.1    Martin, E.2    Morris, A.3
  • 22
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • T. Chen, J. Morris, and E. Martin Gaussian process regression for multivariate spectroscopic calibration Chemometr. Intell. Lab. Syst. 87 2007 59 71
    • (2007) Chemometr. Intell. Lab. Syst. , vol.87 , pp. 59-71
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 25
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: A missing link in multivariate quality control
    • P. Miller, R. Swanson, and C. Heckler Contribution plots: a missing link in multivariate quality control Appl. Math. Comput. Sci. 8 1998 775 792
    • (1998) Appl. Math. Comput. Sci. , vol.8 , pp. 775-792
    • Miller, P.1    Swanson, R.2    Heckler, C.3
  • 26
    • 0033659644 scopus 로고    scopus 로고
    • Confidence limits for contribution plots
    • A. Conlin, E. Martin, and A. Morris Confidence limits for contribution plots J. Chemometr. 14 2000 725 736
    • (2000) J. Chemometr. , vol.14 , pp. 725-736
    • Conlin, A.1    Martin, E.2    Morris, A.3
  • 27
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • S.J. Qin Statistical process monitoring: basics and beyond J. Chemometr. 17 2003 480 502
    • (2003) J. Chemometr. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 28
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • H.H. Yue, and S.J. Qin Reconstruction-based fault identification using a combined index Ind. Eng. Chem. Res. 40 2001 4403 4414
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 30
    • 10844277106 scopus 로고    scopus 로고
    • Nearest neighbour approach in the least-squares data imputation algorithms
    • I. Wasito, and B. Mirkin Nearest neighbour approach in the least-squares data imputation algorithms Inf. Sci. 169 2005 1 25
    • (2005) Inf. Sci. , vol.169 , pp. 1-25
    • Wasito, I.1    Mirkin, B.2
  • 31
    • 84864301166 scopus 로고    scopus 로고
    • Reconstruction-based multivariate contribution analysis for fault isolation: A branch and bound approach
    • B. He, X. Yang, T. Chen, and J. Zhang Reconstruction-based multivariate contribution analysis for fault isolation: a branch and bound approach J. Process Control 22 2012 1228 1236
    • (2012) J. Process Control , vol.22 , pp. 1228-1236
    • He, B.1    Yang, X.2    Chen, T.3    Zhang, J.4
  • 32
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J. Downs, and E. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.1    Vogel, E.2
  • 33
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Z. Ge, C. Yang, and Z. Song Improved kernel PCA-based monitoring approach for nonlinear processes Chem. Eng. Sci. 64 2009 2245 2255
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 34
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • J.-M. Lee, S.J. Qin, and I.-B. Lee Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 85 2007 526 536
    • (2007) Can. J. Chem. Eng. , vol.85 , pp. 526-536
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 35
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technique and statistical analysis
    • Y. Zhang, and S.J. Qin Improved nonlinear fault detection technique and statistical analysis AIChE J. 54 2008 3207 3220
    • (2008) AIChE J. , vol.54 , pp. 3207-3220
    • Zhang, Y.1    Qin, S.J.2
  • 37
    • 77951090351 scopus 로고    scopus 로고
    • On-line batch process monitoring using batch dynamic kernel principal component analysis
    • M. Jia, F. Chu, F. Wang, and W. Wang On-line batch process monitoring using batch dynamic kernel principal component analysis Chemometr. Intell. Lab. Syst. 101 2010 110 122
    • (2010) Chemometr. Intell. Lab. Syst. , vol.101 , pp. 110-122
    • Jia, M.1    Chu, F.2    Wang, F.3    Wang, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.