-
1
-
-
5044228983
-
-
Agarwal, A., & Triggs, B. (2004). 3D human pose from silhouettes by relevance vector regression. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition (Vol. 882, pp. II-882-II-888).
-
Agarwal, A., & Triggs, B. (2004). 3D human pose from silhouettes by relevance vector regression. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition (Vol. 882, pp. II-882-II-888).
-
-
-
-
2
-
-
33645727457
-
Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation
-
Bo L., Wang L., and Jiao L. Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation. Neural Computation 18 4 (2006) 961-978
-
(2006)
Neural Computation
, vol.18
, Issue.4
, pp. 961-978
-
-
Bo, L.1
Wang, L.2
Jiao, L.3
-
3
-
-
33745879426
-
Sparse gaussian processes using backward elimination
-
Bo L.F., Wang L., and Jiao L.C. Sparse gaussian processes using backward elimination. Advances in Neural Networks 3971 1 (2006) 1083-1088
-
(2006)
Advances in Neural Networks
, vol.3971
, Issue.1
, pp. 1083-1088
-
-
Bo, L.F.1
Wang, L.2
Jiao, L.C.3
-
4
-
-
34247558132
-
Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
-
Cawley G.C., and Talbot N.L.C. Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research 8 (2007) 841-861
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
5
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning 46 1/3 (2002) 131
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
6
-
-
0038891993
-
Sparse on-line gaussian processes
-
Csato L., and Opper M. Sparse on-line gaussian processes. Neural Computation 14 3 (2002) 641-668
-
(2002)
Neural Computation
, vol.14
, Issue.3
, pp. 641-668
-
-
Csato, L.1
Opper, M.2
-
7
-
-
56349107198
-
-
Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean air.
-
Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean air.
-
-
-
-
8
-
-
0000234257
-
The evidence framework applied to classification networks
-
MacKay D. The evidence framework applied to classification networks. Neural Computation 4 5 (1992) 720-736
-
(1992)
Neural Computation
, vol.4
, Issue.5
, pp. 720-736
-
-
MacKay, D.1
-
10
-
-
56349104894
-
-
Newman, D. J., & Asuncion, A. (2007). UCI machine learning repository. Available from http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
Newman, D. J., & Asuncion, A. (2007). UCI machine learning repository. Available from http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
-
-
-
11
-
-
56349100896
-
-
Quiñonero Candela, J. (2004). Learning with uncertainty - Gaussian processes and relevance vector machines. PhD thesis, Technical University of Denmark, Lyngby, Denmark.
-
Quiñonero Candela, J. (2004). Learning with uncertainty - Gaussian processes and relevance vector machines. PhD thesis, Technical University of Denmark, Lyngby, Denmark.
-
-
-
-
13
-
-
56349148116
-
-
Roweis, S. (1999). Matrix identities. Available from http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf.
-
Roweis, S. (1999). Matrix identities. Available from http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf.
-
-
-
-
14
-
-
34547451767
-
Smooth relevance vector machine: A smoothness prior extension of the RVM
-
Schmolck A., and Everson R. Smooth relevance vector machine: A smoothness prior extension of the RVM. Machine Learning 68 2 (2007) 107-135
-
(2007)
Machine Learning
, vol.68
, Issue.2
, pp. 107-135
-
-
Schmolck, A.1
Everson, R.2
-
15
-
-
4043137356
-
A tutorial on support vector regression
-
Smola A., and Schölkopf B. A tutorial on support vector regression. Statistics and Computing 14 3 (2004) 199-222
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.1
Schölkopf, B.2
-
17
-
-
33845967096
-
Fast generalized cross-validation algorithm for sparse model learning
-
Sundararajan S., Shevade S.K., and Sathiya Keerthi S. Fast generalized cross-validation algorithm for sparse model learning. Neural Computation 19 1 (2007) 283-301
-
(2007)
Neural Computation
, vol.19
, Issue.1
, pp. 283-301
-
-
Sundararajan, S.1
Shevade, S.K.2
Sathiya Keerthi, S.3
-
18
-
-
84899032239
-
The relevance vector machine
-
Solla A., Leen T., and Mller K.-R. (Eds), MIT, Cambridge
-
Tipping M. The relevance vector machine. In: Solla A., Leen T., and Mller K.-R. (Eds). Advances in neural information processing systems Vol. 12 (2000), MIT, Cambridge 652-658
-
(2000)
Advances in neural information processing systems
, vol.12
, pp. 652-658
-
-
Tipping, M.1
-
19
-
-
35048822888
-
Bayesian inference: An introduction to principles and practice in machine learning
-
Tipping M. Bayesian inference: An introduction to principles and practice in machine learning. Advanced Lectures on Machine Learning 3176 (2004) 41-62
-
(2004)
Advanced Lectures on Machine Learning
, vol.3176
, pp. 41-62
-
-
Tipping, M.1
-
20
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
Tipping M.E. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
21
-
-
56349114198
-
-
Tipping, M. E. & Faul, A. C. (2003). Fast marginal likelihood maximization for sparse bayesian models. In Proceedings of the ninth international workshop on artificial intelligence and statistics.
-
Tipping, M. E. & Faul, A. C. (2003). Fast marginal likelihood maximization for sparse bayesian models. In Proceedings of the ninth international workshop on artificial intelligence and statistics.
-
-
-
-
25
-
-
34548698657
-
Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process
-
Yuan J., Wang K., Yu T., and Fang M. Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process. Engineering Applications of Artificial Intelligence 20 7 (2007) 970-979
-
(2007)
Engineering Applications of Artificial Intelligence
, vol.20
, Issue.7
, pp. 970-979
-
-
Yuan, J.1
Wang, K.2
Yu, T.3
Fang, M.4
|