메뉴 건너뛰기




Volumn 36, Issue 2 PART 2, 2009, Pages 3982-3989

Adaptive spherical Gaussian kernel in sparse Bayesian learning framework for nonlinear regression

Author keywords

Bayesian evidence; Gaussian kernel function; Gradient descent algorithm; Regression; Relevance vector machine (RVM)

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; GAUSSIAN DISTRIBUTION; LEARNING SYSTEMS;

EID: 56349151737     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.02.055     Document Type: Article
Times cited : (42)

References (25)
  • 1
    • 5044228983 scopus 로고    scopus 로고
    • Agarwal, A., & Triggs, B. (2004). 3D human pose from silhouettes by relevance vector regression. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition (Vol. 882, pp. II-882-II-888).
    • Agarwal, A., & Triggs, B. (2004). 3D human pose from silhouettes by relevance vector regression. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition (Vol. 882, pp. II-882-II-888).
  • 2
    • 33645727457 scopus 로고    scopus 로고
    • Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation
    • Bo L., Wang L., and Jiao L. Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation. Neural Computation 18 4 (2006) 961-978
    • (2006) Neural Computation , vol.18 , Issue.4 , pp. 961-978
    • Bo, L.1    Wang, L.2    Jiao, L.3
  • 3
    • 33745879426 scopus 로고    scopus 로고
    • Sparse gaussian processes using backward elimination
    • Bo L.F., Wang L., and Jiao L.C. Sparse gaussian processes using backward elimination. Advances in Neural Networks 3971 1 (2006) 1083-1088
    • (2006) Advances in Neural Networks , vol.3971 , Issue.1 , pp. 1083-1088
    • Bo, L.F.1    Wang, L.2    Jiao, L.C.3
  • 4
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters
    • Cawley G.C., and Talbot N.L.C. Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research 8 (2007) 841-861
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., and Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning 46 1/3 (2002) 131
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 6
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line gaussian processes
    • Csato L., and Opper M. Sparse on-line gaussian processes. Neural Computation 14 3 (2002) 641-668
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 641-668
    • Csato, L.1    Opper, M.2
  • 7
    • 56349107198 scopus 로고    scopus 로고
    • Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean air.
    • Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean air.
  • 8
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay D. The evidence framework applied to classification networks. Neural Computation 4 5 (1992) 720-736
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.1
  • 10
    • 56349104894 scopus 로고    scopus 로고
    • Newman, D. J., & Asuncion, A. (2007). UCI machine learning repository. Available from http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • Newman, D. J., & Asuncion, A. (2007). UCI machine learning repository. Available from http://www.ics.uci.edu/~mlearn/MLRepository.html.
  • 11
    • 56349100896 scopus 로고    scopus 로고
    • Quiñonero Candela, J. (2004). Learning with uncertainty - Gaussian processes and relevance vector machines. PhD thesis, Technical University of Denmark, Lyngby, Denmark.
    • Quiñonero Candela, J. (2004). Learning with uncertainty - Gaussian processes and relevance vector machines. PhD thesis, Technical University of Denmark, Lyngby, Denmark.
  • 13
    • 56349148116 scopus 로고    scopus 로고
    • Roweis, S. (1999). Matrix identities. Available from http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf.
    • Roweis, S. (1999). Matrix identities. Available from http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf.
  • 14
    • 34547451767 scopus 로고    scopus 로고
    • Smooth relevance vector machine: A smoothness prior extension of the RVM
    • Schmolck A., and Everson R. Smooth relevance vector machine: A smoothness prior extension of the RVM. Machine Learning 68 2 (2007) 107-135
    • (2007) Machine Learning , vol.68 , Issue.2 , pp. 107-135
    • Schmolck, A.1    Everson, R.2
  • 15
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A., and Schölkopf B. A tutorial on support vector regression. Statistics and Computing 14 3 (2004) 199-222
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 17
    • 33845967096 scopus 로고    scopus 로고
    • Fast generalized cross-validation algorithm for sparse model learning
    • Sundararajan S., Shevade S.K., and Sathiya Keerthi S. Fast generalized cross-validation algorithm for sparse model learning. Neural Computation 19 1 (2007) 283-301
    • (2007) Neural Computation , vol.19 , Issue.1 , pp. 283-301
    • Sundararajan, S.1    Shevade, S.K.2    Sathiya Keerthi, S.3
  • 18
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • Solla A., Leen T., and Mller K.-R. (Eds), MIT, Cambridge
    • Tipping M. The relevance vector machine. In: Solla A., Leen T., and Mller K.-R. (Eds). Advances in neural information processing systems Vol. 12 (2000), MIT, Cambridge 652-658
    • (2000) Advances in neural information processing systems , vol.12 , pp. 652-658
    • Tipping, M.1
  • 19
    • 35048822888 scopus 로고    scopus 로고
    • Bayesian inference: An introduction to principles and practice in machine learning
    • Tipping M. Bayesian inference: An introduction to principles and practice in machine learning. Advanced Lectures on Machine Learning 3176 (2004) 41-62
    • (2004) Advanced Lectures on Machine Learning , vol.3176 , pp. 41-62
    • Tipping, M.1
  • 20
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 (2001) 211-244
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 21
    • 56349114198 scopus 로고    scopus 로고
    • Tipping, M. E. & Faul, A. C. (2003). Fast marginal likelihood maximization for sparse bayesian models. In Proceedings of the ninth international workshop on artificial intelligence and statistics.
    • Tipping, M. E. & Faul, A. C. (2003). Fast marginal likelihood maximization for sparse bayesian models. In Proceedings of the ninth international workshop on artificial intelligence and statistics.
  • 25
    • 34548698657 scopus 로고    scopus 로고
    • Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process
    • Yuan J., Wang K., Yu T., and Fang M. Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process. Engineering Applications of Artificial Intelligence 20 7 (2007) 970-979
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.7 , pp. 970-979
    • Yuan, J.1    Wang, K.2    Yu, T.3    Fang, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.