메뉴 건너뛰기




Volumn , Issue , 2013, Pages 125-130

Non-euclidean independent component analysis and Oja's learning

Author keywords

[No Author keywords available]

Indexed keywords

EUCLIDEAN SPACES; INDEPENDENT COMPONENT ANALYSIS(ICA); ISOMORPHIC MAPPING; LINEAR DEMIXING; LINEAR UNMIXING; NON-LINEAR ICA; NONLINEAR INDEPENDENT COMPONENT ANALYSIS; REPRODUCING KERNEL HILBERT SPACES;

EID: 84887046946     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (29)
  • 4
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for source separation
    • J.-F. Cardoso. Infomax and maximum likelihood for source separation. IEEE Letters on Signal Processing, 4:112-114, 1997.
    • (1997) IEEE Letters On Signal Processing , vol.4 , pp. 112-114
    • Cardoso, J.-F.1
  • 7
    • 0041376445 scopus 로고    scopus 로고
    • Kernel-based nonlinear blind source separation
    • S. Harmeling, A. Ziehe, and M. K. K.-R. Müller. Kernel-based nonlinear blind source separation. Neural Computation, 15(5):1089-1124, 2003.
    • (2003) Neural Computation , vol.15 , Issue.5 , pp. 1089-1124
    • Harmeling, S.1    Ziehe, A.2    Müller, M.K.K.-R.3
  • 8
    • 0003331344 scopus 로고
    • The Organization of Behavior
    • John Wiley, New York
    • D. Hebb. The Organization of Behavior. A Neuropsychological Theory. John Wiley, New York, 1949.
    • (1949) A Neuropsychological Theory
    • Hebb, D.1
  • 9
    • 0032629347 scopus 로고    scopus 로고
    • The fixed-point algorithm and maximum likelihood estimation for independent component analysis
    • A. Hyvärinen. The fixed-point algorithm and maximum likelihood estimation for independent component analysis. IEEE Transactions on Neural Networks, 10(3):626-634, 1999.
    • (1999) IEEE Transactions On Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 11
    • 0030322997 scopus 로고    scopus 로고
    • Simple neuron models for independent component analysis
    • A. Hyvärinen and E. Oja. Simple neuron models for independent component analysis. International Journal of Neural Systems, 7(6):671-687, 1996.
    • (1996) International Journal of Neural Systems , vol.7 , Issue.6 , pp. 671-687
    • Hyvärinen, A.1    Oja, E.2
  • 12
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general nonlinear hebbianlike learning rules
    • A. Hyvärinen and E. Oja. Independent component analysis by general nonlinear hebbianlike learning rules. Signal Processing, 64:301-313, 1998.
    • (1998) Signal Processing , vol.64 , pp. 301-313
    • Hyvärinen, A.1    Oja, E.2
  • 14
    • 0002599871 scopus 로고
    • What is projection pursuit? Journal of the Royal Statistical Society
    • M. Jones and R. Sibson. What is projection pursuit? Journal of the Royal Statistical Society, Series A, 150:1-36, 1987.
    • (1987) Series A , vol.150 , pp. 1-36
    • Jones, M.1    Sibson, R.2
  • 15
    • 0026191274 scopus 로고
    • Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Hérault. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24:1-10, 1991.
    • (1991) Signal Processing , vol.24 , pp. 1-10
    • Jutten, C.1    Hérault, J.2
  • 16
    • 21644454696 scopus 로고    scopus 로고
    • Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures
    • C. Jutten and J. Karhunen. Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures. International Journal of Neural Systems, 14(5):267-292, 2004.
    • (2004) International Journal of Neural Systems , vol.14 , Issue.5 , pp. 267-292
    • Jutten, C.1    Karhunen, J.2
  • 18
    • 0032212834 scopus 로고    scopus 로고
    • The nonlinear PCA criterion in blind source separation: Relations with other approaches
    • J. Karhunen, P. Pajunen, and E. Oja. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 22:5-20, 1998.
    • (1998) Neurocomputing , vol.22 , pp. 5-20
    • Karhunen, J.1    Pajunen, P.2    Oja, E.3
  • 20
    • 0037276906 scopus 로고    scopus 로고
    • Nonlinear blind source separation using kernels
    • D. Martinez and A. Bray. Nonlinear blind source separation using kernels. IEEE Transactions on Neural Networks, 14(1):228-235, 2003.
    • (2003) IEEE Transactions On Neural Networks , vol.14 , Issue.1 , pp. 228-235
    • Martinez, D.1    Bray, A.2
  • 21
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • London, A
    • J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A, 209:415-446, 1909.
    • (1909) Philosophical Transactions of the Royal Society , vol.209 , pp. 415-446
    • Mercer, J.1
  • 22
    • 0000772267 scopus 로고
    • Non-linear neurons in the low noise limit: A factorial code maximizes information transfer
    • J.-P. Nadal and N. Parga. Non-linear neurons in the low noise limit: a factorial code maximizes information transfer. Netw, 5:565-581, 1994.
    • (1994) Netw , vol.5 , pp. 565-581
    • Nadal, J.-P.1    Parga, N.2
  • 23
    • 0002399288 scopus 로고
    • Neural networks, principle components and subspaces
    • E. Oja. Neural networks, principle components and subspaces. International Journal of Neural Systems, 1:61-68, 1989.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 24
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • E. Oja. The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17:25-45, 1997.
    • (1997) Neurocomputing , vol.17 , pp. 25-45
    • Oja, E.1
  • 25
    • 0036648194 scopus 로고    scopus 로고
    • Mutual information approach to blind separation of stationary sources
    • D. Pham. Mutual information approach to blind separation of stationary sources. IEEE Transactions on Information Theory, 48:1935-1946, 2002.
    • (2002) IEEE Transactions On Information Theory , vol.48 , pp. 1935-1946
    • Pham, D.1
  • 26
    • 0002049291 scopus 로고    scopus 로고
    • Separation of a mixture of independent sources through a maximum likelihood approach
    • J. Vandewalle, R. Boite, M. Moonen, and A. Oosterlinck, editors
    • D.-T. Pham, P. Garat, and C. Jutten. Separation of a mixture of independent sources through a maximum likelihood approach. In J. Vandewalle, R. Boite, M. Moonen, and A. Oosterlinck, editors, Signal Processing VI: Theories and Applications (EUSIPCO), pages 771-774, 1997.
    • (1997) Signal Processing VI: Theories and Applications (EUSIPCO) , pp. 771-774
    • Pham, D.-T.1    Garat, P.2    Jutten, C.3
  • 28
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 29
    • 84887110016 scopus 로고    scopus 로고
    • A note on gradient based learning in vector quantization using differentiable kernels for Hilbert and Banach spaces
    • 6(MLR-02-2012) ISSN:1865-3960
    • T. Villmann and S. Haase. A note on gradient based learning in vector quantization using differentiable kernels for Hilbert and Banach spaces. Machine Learning Reports, 6(MLR-02-2012):1-29, 2012. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/ ~fschleif/mlr/mlr_02_2012.pdf.
    • (2012) Machine Learning Reports , vol.6 , pp. 1-29
    • Villmann, T.1    Haase, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.