-
3
-
-
84872222868
-
Non-euclidean principal component analysis and Oja's learning rule _ theoretical aspects
-
In P. Estevez, J. Principe, and P. Zegers, editors, Berlin, Springer
-
M. Biehl, M. Kästner, M. Lange, and T. Villmann. Non-euclidean principal component analysis and Oja's learning rule _ theoretical aspects. In P. Estevez, J. Principe, and P. Zegers, editors, Advances in Self-Organizing Maps: 9th International Workshop WSOM 2012 Santiage de Chile, volume 198 of Advances in Intelligent Systems and Computing, pages 23-34, Berlin, 2012. Springer.
-
(2012)
Advances In Self-Organizing Maps: 9th International Workshop WSOM 2012 Santiage De Chile, Volume 198 of Advances In Intelligent Systems and Computing
, pp. 23-34
-
-
Biehl, M.1
Kästner, M.2
Lange, M.3
Villmann, T.4
-
4
-
-
0031122399
-
Infomax and maximum likelihood for source separation
-
J.-F. Cardoso. Infomax and maximum likelihood for source separation. IEEE Letters on Signal Processing, 4:112-114, 1997.
-
(1997)
IEEE Letters On Signal Processing
, vol.4
, pp. 112-114
-
-
Cardoso, J.-F.1
-
7
-
-
0041376445
-
Kernel-based nonlinear blind source separation
-
S. Harmeling, A. Ziehe, and M. K. K.-R. Müller. Kernel-based nonlinear blind source separation. Neural Computation, 15(5):1089-1124, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.5
, pp. 1089-1124
-
-
Harmeling, S.1
Ziehe, A.2
Müller, M.K.K.-R.3
-
8
-
-
0003331344
-
The Organization of Behavior
-
John Wiley, New York
-
D. Hebb. The Organization of Behavior. A Neuropsychological Theory. John Wiley, New York, 1949.
-
(1949)
A Neuropsychological Theory
-
-
Hebb, D.1
-
9
-
-
0032629347
-
The fixed-point algorithm and maximum likelihood estimation for independent component analysis
-
A. Hyvärinen. The fixed-point algorithm and maximum likelihood estimation for independent component analysis. IEEE Transactions on Neural Networks, 10(3):626-634, 1999.
-
(1999)
IEEE Transactions On Neural Networks
, vol.10
, Issue.3
, pp. 626-634
-
-
Hyvärinen, A.1
-
11
-
-
0030322997
-
Simple neuron models for independent component analysis
-
A. Hyvärinen and E. Oja. Simple neuron models for independent component analysis. International Journal of Neural Systems, 7(6):671-687, 1996.
-
(1996)
International Journal of Neural Systems
, vol.7
, Issue.6
, pp. 671-687
-
-
Hyvärinen, A.1
Oja, E.2
-
12
-
-
0031999294
-
Independent component analysis by general nonlinear hebbianlike learning rules
-
A. Hyvärinen and E. Oja. Independent component analysis by general nonlinear hebbianlike learning rules. Signal Processing, 64:301-313, 1998.
-
(1998)
Signal Processing
, vol.64
, pp. 301-313
-
-
Hyvärinen, A.1
Oja, E.2
-
14
-
-
0002599871
-
What is projection pursuit? Journal of the Royal Statistical Society
-
M. Jones and R. Sibson. What is projection pursuit? Journal of the Royal Statistical Society, Series A, 150:1-36, 1987.
-
(1987)
Series A
, vol.150
, pp. 1-36
-
-
Jones, M.1
Sibson, R.2
-
15
-
-
0026191274
-
Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture
-
C. Jutten and J. Hérault. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24:1-10, 1991.
-
(1991)
Signal Processing
, vol.24
, pp. 1-10
-
-
Jutten, C.1
Hérault, J.2
-
16
-
-
21644454696
-
Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures
-
C. Jutten and J. Karhunen. Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures. International Journal of Neural Systems, 14(5):267-292, 2004.
-
(2004)
International Journal of Neural Systems
, vol.14
, Issue.5
, pp. 267-292
-
-
Jutten, C.1
Karhunen, J.2
-
17
-
-
0031139249
-
A class of neural networks for independnet component analysis
-
J. Karhunen, E. Oja, L. Wang, R. Vigário, and J. Joutsensalo. A class of neural networks for independnet component analysis. IEEE Transactions on Neural Networks, 8(3):486-504, 1997.
-
(1997)
IEEE Transactions On Neural Networks
, vol.8
, Issue.3
, pp. 486-504
-
-
Karhunen, J.1
Oja, E.2
Wang, L.3
Vigário, R.4
Joutsensalo, J.5
-
18
-
-
0032212834
-
The nonlinear PCA criterion in blind source separation: Relations with other approaches
-
J. Karhunen, P. Pajunen, and E. Oja. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 22:5-20, 1998.
-
(1998)
Neurocomputing
, vol.22
, pp. 5-20
-
-
Karhunen, J.1
Pajunen, P.2
Oja, E.3
-
20
-
-
0037276906
-
Nonlinear blind source separation using kernels
-
D. Martinez and A. Bray. Nonlinear blind source separation using kernels. IEEE Transactions on Neural Networks, 14(1):228-235, 2003.
-
(2003)
IEEE Transactions On Neural Networks
, vol.14
, Issue.1
, pp. 228-235
-
-
Martinez, D.1
Bray, A.2
-
21
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
London, A
-
J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A, 209:415-446, 1909.
-
(1909)
Philosophical Transactions of the Royal Society
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
22
-
-
0000772267
-
Non-linear neurons in the low noise limit: A factorial code maximizes information transfer
-
J.-P. Nadal and N. Parga. Non-linear neurons in the low noise limit: a factorial code maximizes information transfer. Netw, 5:565-581, 1994.
-
(1994)
Netw
, vol.5
, pp. 565-581
-
-
Nadal, J.-P.1
Parga, N.2
-
23
-
-
0002399288
-
Neural networks, principle components and subspaces
-
E. Oja. Neural networks, principle components and subspaces. International Journal of Neural Systems, 1:61-68, 1989.
-
(1989)
International Journal of Neural Systems
, vol.1
, pp. 61-68
-
-
Oja, E.1
-
24
-
-
0343416807
-
The nonlinear PCA learning rule in independent component analysis
-
E. Oja. The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17:25-45, 1997.
-
(1997)
Neurocomputing
, vol.17
, pp. 25-45
-
-
Oja, E.1
-
25
-
-
0036648194
-
Mutual information approach to blind separation of stationary sources
-
D. Pham. Mutual information approach to blind separation of stationary sources. IEEE Transactions on Information Theory, 48:1935-1946, 2002.
-
(2002)
IEEE Transactions On Information Theory
, vol.48
, pp. 1935-1946
-
-
Pham, D.1
-
26
-
-
0002049291
-
Separation of a mixture of independent sources through a maximum likelihood approach
-
J. Vandewalle, R. Boite, M. Moonen, and A. Oosterlinck, editors
-
D.-T. Pham, P. Garat, and C. Jutten. Separation of a mixture of independent sources through a maximum likelihood approach. In J. Vandewalle, R. Boite, M. Moonen, and A. Oosterlinck, editors, Signal Processing VI: Theories and Applications (EUSIPCO), pages 771-774, 1997.
-
(1997)
Signal Processing VI: Theories and Applications (EUSIPCO)
, pp. 771-774
-
-
Pham, D.-T.1
Garat, P.2
Jutten, C.3
-
28
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
29
-
-
84887110016
-
A note on gradient based learning in vector quantization using differentiable kernels for Hilbert and Banach spaces
-
6(MLR-02-2012) ISSN:1865-3960
-
T. Villmann and S. Haase. A note on gradient based learning in vector quantization using differentiable kernels for Hilbert and Banach spaces. Machine Learning Reports, 6(MLR-02-2012):1-29, 2012. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/ ~fschleif/mlr/mlr_02_2012.pdf.
-
(2012)
Machine Learning Reports
, vol.6
, pp. 1-29
-
-
Villmann, T.1
Haase, S.2
|