메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages 479-505

Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge

Author keywords

Adsorption; Carbon capture and sequestration; Climate change; Membranes; Minimum thermodynamic work

Indexed keywords

ADSORPTION; CARBON CAPTURE; CARBON DIOXIDE; CLIMATE CHANGE; ENVIRONMENTAL IMPACT; GLOBAL WARMING; MEMBRANES; SEPARATION; GAS PLANTS;

EID: 84902492512     PISSN: 19475438     EISSN: None     Source Type: Journal    
DOI: 10.1146/annurev-chembioeng-060713-040100     Document Type: Review
Times cited : (93)

References (132)
  • 7
    • 65949086009 scopus 로고    scopus 로고
    • Warming caused by cumulative carbon emissions towards the trillionth tonne
    • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, et al. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163-66
    • (2009) Nature , vol.458 , pp. 1163-1166
    • Allen, M.R.1    Frame, D.J.2    Huntingford, C.3    Jones, C.D.4    Lowe, J.A.5
  • 8
    • 84855995404 scopus 로고    scopus 로고
    • Direct air capture of co2 with chemicals-A technology assessment for the aps panel on public affairs
    • College Park MD
    • Socolow R, DesmondM, Aines R, Blackstock J, Bolland O, et al. 2011. Direct Air Capture of CO2 with Chemicals-A Technology Assessment for the APS Panel on Public Affairs. College Park, MD. Am. Phys. Soc.
    • (2011) Am. Phys. Soc
    • Socolow, R.1    Desmond, M.2    Aines, R.3    Blackstock, J.4    Bolland, O.5
  • 12
    • 84876346435 scopus 로고    scopus 로고
    • A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications
    • Maring BJ, Webley PA. 2013. A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh. Gas Control 15:16-31
    • (2013) Int. J. Greenh. Gas Control , vol.15 , pp. 16-31
    • Maring, B.J.1    Webley, P.A.2
  • 13
    • 78650802709 scopus 로고    scopus 로고
    • CO2 capture by solid adsorbents and their applications: Current status and new trends
    • Wang Q, Luo J, Zhong Z, Borgna A. 2011. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4:42-55
    • (2011) Energy Environ. Sci. , vol.4 , pp. 42-55
    • Wang, Q.1    Luo, J.2    Zhong, Z.3    Borgna, A.4
  • 15
    • 0026124071 scopus 로고
    • The water gas shift reaction assisted by a Pd membrane reactor
    • Uemiya S, Sato N, Ando H, Kikuchi E. 1991. The water gas shift reaction assisted by a Pd membrane reactor. Ind. Eng. Chem. Res. 30:585-89
    • (1991) Ind. Eng. Chem. Res. , vol.30 , pp. 585-589
    • Uemiya, S.1    Sato, N.2    Ando, H.3    Kikuchi, E.4
  • 17
    • 77956292319 scopus 로고    scopus 로고
    • Hydrogen production from coalderived syngas using a catalytic membrane reactor based process
    • Abdollahi M, Yu J, Liu PK, Ciora R, Sahimi M, Tsotsis TT. 2010. Hydrogen production from coalderived syngas using a catalytic membrane reactor based process. J. Membr. Sci. 363:160-69
    • (2010) J. Membr. Sci. , vol.363 , pp. 160-169
    • Abdollahi, M.1    Yu, J.2    Liu, P.K.3    Ciora, R.4    Sahimi, M.5    Tsotsis, T.T.6
  • 18
    • 77956294289 scopus 로고    scopus 로고
    • Towards full-scale demonstration of hydrogen-selective membranes for CO2 capture: Inhibition effect of WGS-components on the H2 permeation through three Pd membranes of 44 cm long
    • Li H, Dijkstra J, Pieterse J, Boon J, Van den Brink R, Jansen D. 2010. Towards full-scale demonstration of hydrogen-selective membranes for CO2 capture: inhibition effect of WGS-components on the H2 permeation through three Pd membranes of 44 cm long. J. Membr. Sci. 363:204-11
    • (2010) J. Membr. Sci. , vol.363 , pp. 204-211
    • Li, H.1    Dijkstra, J.2    Pieterse, J.3    Boon, J.4    Van Den Brink, R.5    Jansen, D.6
  • 19
    • 11144305214 scopus 로고    scopus 로고
    • The effect of water on the adsorption of CO2 and C3H8 on type X zeolites
    • Brandani F, Ruthven DM. 2004. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind. Eng. Chem. Res. 43:8339-44
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 8339-8344
    • Brandani, F.1    Ruthven, D.M.2
  • 20
    • 84863680013 scopus 로고    scopus 로고
    • Yeast-based microporous carbon materials for carbon dioxide capture
    • Shen W, He Y, Zhang S, Li J, Fan W. 2012. Yeast-based microporous carbon materials for carbon dioxide capture. Chem Sus Chem. 5:1274-79
    • (2012) Chem Sus Chem. , vol.5 , pp. 1274-1279
    • Shen, W.1    He, Y.2    Zhang, S.3    Li, J.4    Fan, W.5
  • 21
    • 43949087827 scopus 로고    scopus 로고
    • Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids Surf
    • Wang Y, Zhou Y, Liu C, Zhou L. 2008. Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids Surf. A Physicochem. Eng. Asp. 322:14-18
    • (2008) A Physicochem. Eng. Asp. , vol.322 , pp. 14-18
    • Wang, Y.1    Zhou, Y.2    Liu, C.3    Zhou, L.4
  • 22
    • 66149155081 scopus 로고    scopus 로고
    • Enhanced CO2 adsorption in metalorganic frameworks via occupation of open-metal sites by coordinated water molecules
    • Ö zgü r Y, Benin AI, Faheem SA, Jakubczak P, Low JJ, et al. 2009. Enhanced CO2 adsorption in metalorganic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21:1425-30
    • (2009) Chem. Mater. , vol.21 , pp. 1425-1430
    • Özgür, Y.B.1
  • 23
    • 77952795571 scopus 로고    scopus 로고
    • Metal-organic framework MIL-101 for adsorption and effect of terminal water molecules: From quantum mechanics to molecular simulation
    • Chen YF, Babarao R, Sandler SI, Jiang JW. 2010. Metal-organic framework MIL-101 for adsorption and effect of terminal water molecules: from quantum mechanics to molecular simulation. Langmuir 26:8743-50
    • (2010) Langmuir , vol.26 , pp. 8743-8750
    • Chen, Y.F.1    Babarao, R.2    Sandler, S.I.3    Jiang, J.W.4
  • 24
    • 77950790043 scopus 로고    scopus 로고
    • Moisture-resistant and superhydrophobic metalorganic frameworks obtained via postsynthetic modification
    • Nguyen JG, Cohen SM. 2010. Moisture-resistant and superhydrophobic metalorganic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132:4560-61
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 4560-4561
    • Nguyen, J.G.1    Cohen, S.M.2
  • 25
    • 79954603167 scopus 로고    scopus 로고
    • Methyl modified MOF-5: A water stable hydrogen storage material
    • Yang J, Grzech A, Mulder FM, Dingemans TJ. 2011. Methyl modifiedMOF-5: a water stable hydrogen storage material. Chem. Commun. 47:5244-46
    • (2011) Chem. Commun. , vol.47 , pp. 5244-5246
    • Yang, J.1    Grzech, A.2    Mulder, F.M.3    Dingemans, T.J.4
  • 26
    • 72049110502 scopus 로고    scopus 로고
    • Structured adsorbents in gas separation processes
    • Rezaei F, Webley P. 2010. Structured adsorbents in gas separation processes. Sep. Purif. Technol. 70:243-56
    • (2010) Sep. Purif. Technol. , vol.70 , pp. 243-256
    • Rezaei, F.1    Webley, P.2
  • 27
    • 3643089036 scopus 로고
    • Kinetics of carbamate formation and breakdown
    • Caplow M. 1968. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 90:6795-803
    • (1968) J. Am. Chem. Soc. , vol.90 , pp. 6795-6803
    • Caplow, M.1
  • 28
    • 0020754082 scopus 로고
    • Sterically hindered amines for CO2 removal from gases
    • Sartori G, Savage DW. 1983. Sterically hindered amines for CO2 removal from gases. Ind. Eng. Chem. Fundam. 22:239-49
    • (1983) Ind. Eng. Chem. Fundam. , vol.22 , pp. 239-249
    • Sartori, G.1    Savage, D.W.2
  • 29
    • 72649095107 scopus 로고    scopus 로고
    • Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents
    • Drese JH, Choi S, Lively RP, Koros WJ, Fauth DJ, et al. 2009. Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Adv. Funct. Mater. 19:3821-32
    • (2009) Adv. Funct. Mater. , vol.19 , pp. 3821-3832
    • Drese, J.H.1    Choi, S.2    Lively, R.P.3    Koros, W.J.4    Fauth, D.J.5
  • 30
    • 79851500355 scopus 로고    scopus 로고
    • High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules
    • Qi G, Wang Y, Estevez L, Duan X, Anako N, et al. 2011. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4:444-52
    • (2011) Energy Environ. Sci. , vol.4 , pp. 444-452
    • Qi, G.1    Wang, Y.2    Estevez, L.3    Duan, X.4    Anako, N.5
  • 31
    • 84876951552 scopus 로고    scopus 로고
    • MOF and UiO-67/MCM-41 adsorbents for precombustion CO2 capture by PSA: Breakthrough experiments and process design
    • Casas N, Schell J, Blom R, Mazzotti M. 2013. MOF and UiO-67/MCM-41 adsorbents for precombustion CO2 capture by PSA: breakthrough experiments and process design. Sep. Purif. Technol. 112:34-48
    • (2013) Sep. Purif. Technol. , vol.112 , pp. 34-48
    • Casas, N.1    Schell, J.2    Blom, R.3    Mazzotti, M.4
  • 32
    • 67650150958 scopus 로고    scopus 로고
    • Pre-combustion CO2 capture for IGCC plants by an adsorption process
    • Schell J, Casas N, Mazzotti M. 2009. Pre-combustion CO2 capture for IGCC plants by an adsorption process. Energy Procedia 1:655-60
    • (2009) Energy Procedia , vol.1 , pp. 655-660
    • Schell, J.1    Casas, N.2    Mazzotti, M.3
  • 33
    • 67650105254 scopus 로고    scopus 로고
    • Novel adsorption processes for carbon dioxide capture within a IGCC process
    • Xiao P, Wilson S, Xiao G, Singh R, Webley P. 2009. Novel adsorption processes for carbon dioxide capture within a IGCC process. Energy Procedia 1:631-38
    • (2009) Energy Procedia , vol.1 , pp. 631-638
    • Xiao, P.1    Wilson, S.2    Xiao, G.3    Singh, R.4    Webley, P.5
  • 34
    • 84878217080 scopus 로고    scopus 로고
    • Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture
    • Garća S, Pis JJ, Rubiera F, Pevida C. 2013. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. Langmuir 29:6042-52
    • (2013) Langmuir , vol.29 , pp. 6042-6052
    • Garća, S.1    Pis, J.J.2    Rubiera, F.3    Pevida, C.4
  • 35
    • 77954858281 scopus 로고    scopus 로고
    • Ultrahigh porosity in metal-organic frameworks
    • Furukawa H, Ko N, Go YB, Aratani N, Choi SB, et al. 2010. Ultrahigh porosity in metal-organic frameworks. Science 329:424-28
    • (2010) Science , vol.329 , pp. 424-428
    • Furukawa, H.1    Ko, N.2    Go, Y.B.3    Aratani, N.4    Choi, S.B.5
  • 37
    • 3342976395 scopus 로고    scopus 로고
    • Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures
    • Cavenati S, Grande CA, Rodrigues AE. 2004. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49:1095-101
    • (2004) J. Chem. Eng. Data , vol.49 , pp. 1095-1101
    • Cavenati, S.1    Grande, C.A.2    Rodrigues, A.E.3
  • 38
    • 15844429396 scopus 로고    scopus 로고
    • High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons
    • Himeno S, Komatsu T, Fujita S. 2005. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50:369-76
    • (2005) J. Chem. Eng. Data , vol.50 , pp. 369-376
    • Himeno, S.1    Komatsu, T.2    Fujita, S.3
  • 39
    • 84882758916 scopus 로고    scopus 로고
    • Activated carbons and amine-modified materials for carbon dioxide capture-A review
    • Chen ZH, Deng SB, Wei HR, Wang B, Huang J, Yu G. 2013. Activated carbons and amine-modified materials for carbon dioxide capture-A review. Front. Environ. Sci. Eng. 7:326-40
    • (2013) Front. Environ. Sci. Eng. , vol.7 , pp. 326-340
    • Zh, C.1    Deng, S.B.2    Wei, H.R.3    Wang, B.4    Huang, J.5    Yu, G.6
  • 40
    • 84876852523 scopus 로고    scopus 로고
    • A controllable synthesis of rich nitrogendoped ordered mesoporous carbon for CO2 capture and supercapacitors
    • Wei J, Zhou DD, Sun ZK, Deng YH, Xia YY, Zhao DY. 2013. A controllable synthesis of rich nitrogendoped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23:2322-28
    • (2013) Adv. Funct. Mater. , vol.23 , pp. 2322-2328
    • Wei, J.1    Zhou, D.D.2    Sun, Z.K.3    Deng, Y.H.4    Xia, Y.Y.5    Zhao, D.Y.6
  • 41
    • 79960531342 scopus 로고    scopus 로고
    • N-doped polypyrrole-based porous carbons for CO2 capture
    • Sevilla M, Valle-Vig ́on P, Fuertes AB. 2011. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21:2781-87
    • (2011) Adv. Funct. Mater. , vol.21 , pp. 2781-2787
    • Sevilla, M.1    Valle-Viǵon, P.2    Fuertes, A.B.3
  • 42
    • 84876575338 scopus 로고    scopus 로고
    • Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture
    • Ma XY, Cao MH, Hu CW. 2013. Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J. Mater. Chem. A 1:913-18
    • (2013) J. Mater. Chem. A , vol.1 , pp. 913-918
    • Ma, X.Y.1    Cao, M.H.2    Hu, C.W.3
  • 43
    • 84876713062 scopus 로고    scopus 로고
    • Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties.ACS Appl
    • Wang JC, Senkovska I, Oschatz M, Lohe MR, Borchardt L, et al. 2013. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties.ACS Appl. Mater. Interfaces 5:3160-67
    • (2013) Mater. Interfaces , vol.5 , pp. 3160-3167
    • Wang, J.C.1    Senkovska, I.2    Oschatz, M.3    Lohe, M.R.4    Borchardt, L.5
  • 44
    • 84875224156 scopus 로고    scopus 로고
    • Template-free synthesis of N-doped porous carbons and their gas sorption properties
    • Gu JM, Kim WS, Hwang YK, Huh S. 2013. Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon 56:208-17
    • (2013) Carbon , vol.56 , pp. 208-217
    • Gu, J.M.1    Kim, W.S.2    Hwang, Y.K.3    Huh, S.4
  • 45
    • 84882429671 scopus 로고    scopus 로고
    • Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture
    • Jin Y, Hawkins SC, Huynh CP, Su S. 2013. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ. Sci. 6:2591-96
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2591-2596
    • Jin, Y.1    Hawkins, S.C.2    Huynh, C.P.3    Su, S.4
  • 46
    • 84878248394 scopus 로고    scopus 로고
    • Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials
    • Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim KS. 2013. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials. Environ. Sci. Technol. 47:5467-73
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 5467-5473
    • Saleh, M.1    Tiwari, J.N.2    Kemp, K.C.3    Yousuf, M.4    Kim, K.S.5
  • 47
    • 84863506632 scopus 로고    scopus 로고
    • Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents
    • Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW, et al. 2012. Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J. Am. Chem. Soc. 134:10741-44
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 10741-10744
    • Dawson, R.1    Stevens, L.A.2    Drage, T.C.3    Snape, C.E.4    Smith, M.W.5
  • 50
    • 84871326065 scopus 로고    scopus 로고
    • Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture
    • Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ, et al. 2013. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci. 6:128-38
    • (2013) Energy Environ. Sci. , vol.6 , pp. 128-138
    • Bae, T.H.1    Hudson, M.R.2    Mason, J.A.3    Queen, W.L.4    Dutton, J.J.5
  • 51
    • 82455219362 scopus 로고    scopus 로고
    • Development and evaluation of porous materials for carbon dioxide separation and capture
    • Bae YS, Snurr RQ. 2011. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem. Int. Ed. 50:11586-96
    • (2011) Angew Chem. Int. Ed. , vol.50 , pp. 11586-11596
    • Bae, Y.S.1    Snurr, R.Q.2
  • 52
    • 84858073116 scopus 로고    scopus 로고
    • Reporting physisorption data for gas/solid systems
    • ed.GErtl,HKn̈ ozinger, F Sch ̈ uth, J Weitkamp Weinheim, Ger.: Wiley-VCH Verlag
    • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, et al. 2008. Reporting physisorption data for gas/solid systems. Handbook of Heterogeneous Catalysis, ed.GErtl,HKn̈ ozinger, F Sch ̈ uth, J Weitkamp, pp. 1217-30. Weinheim, Ger.: Wiley-VCH Verlag
    • (2008) Handbook of Heterogeneous Catalysis , pp. 1217-1230
    • Sing, K.S.W.1    Everett, D.H.2    Haul, R.A.W.3    Moscou, L.4    Pierotti, R.A.5
  • 55
    • 0000424070 scopus 로고
    • The linear driving force model for fast-cycle adsorption and desorption in a spherical particle
    • Alpay E, Scott DM. 1992. The linear driving force model for fast-cycle adsorption and desorption in a spherical particle. Chem. Eng. Sci. 47:499-502
    • (1992) Chem. Eng. Sci. , vol.47 , pp. 499-502
    • Alpay, E.1    Scott, D.M.2
  • 56
    • 0022874499 scopus 로고
    • Numerical simulation of a PSA system using a pore diffusion model
    • Raghavan NS, Hassan MM, Ruthven DM. 1986. Numerical simulation of a PSA system using a pore diffusion model. Chem. Eng. Sci. 41:2787-93
    • (1986) Chem. Eng. Sci. , vol.41 , pp. 2787-2793
    • Raghavan, N.S.1    Hassan, M.M.2    Ruthven, D.M.3
  • 58
    • 0024940260 scopus 로고
    • Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon
    • Kapoor A, Yang RT. 1989. Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon. Chem. Eng. Sci. 44:1723-33
    • (1989) Chem. Eng. Sci. , vol.44 , pp. 1723-1733
    • Kapoor, A.1    Yang, R.T.2
  • 59
    • 0037457931 scopus 로고    scopus 로고
    • Revisiting transport of gases in the micropores of carbon molecular sieves
    • Qinglin H, Sundaram SM, Farooq S. 2002. Revisiting transport of gases in the micropores of carbon molecular sieves. Langmuir 19:393-405
    • (2002) Langmuir , vol.19 , pp. 393-405
    • Qinglin, H.1    Sundaram, S.M.2    Farooq, S.3
  • 60
    • 83655190637 scopus 로고    scopus 로고
    • Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading
    • Bhadra SJ, Farooq S. 2011. Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading. Ind. Eng. Chem. Res. 50:14030-45
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 14030-14045
    • Bhadra, S.J.1    Farooq, S.2
  • 61
    • 84865125076 scopus 로고    scopus 로고
    • Nonisothermal pore diffusion model for a kinetically controlled pressure swing adsorption process
    • Khalighi M, Farooq S, Karimi IA. 2012. Nonisothermal pore diffusion model for a kinetically controlled pressure swing adsorption process. Ind. Eng. Chem. Res. 51:10659-70
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 10659-10670
    • Khalighi, M.1    Farooq, S.2    Karimi, I.A.3
  • 62
    • 71149107669 scopus 로고    scopus 로고
    • Optimum structured adsorbents for gas separation processes
    • Rezaei F, Webley P. 2009. Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64:5182-91
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 5182-5191
    • Rezaei, F.1    Webley, P.2
  • 63
    • 84871294583 scopus 로고    scopus 로고
    • A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2
    • Zhao M, Minett AI, Harris AT. 2012. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 6:25-40
    • (2012) Energy Environ. Sci. , vol.6 , pp. 25-40
    • Zhao, M.1    Minett, A.I.2    Harris, A.T.3
  • 64
    • 77953913370 scopus 로고    scopus 로고
    • Power plant post-combustion carbon dioxide capture: An opportunity for membranes
    • Merkel TC, Lin H, Wei X, Baker R. 2010. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359:126-39
    • (2010) J. Membr. Sci. , vol.359 , pp. 126-139
    • Merkel, T.C.1    Lin, H.2    Wei, X.3    Baker, R.4
  • 65
    • 84873166328 scopus 로고    scopus 로고
    • A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas
    • Low BT, Zhao L,Merkel TC, WeberM, Stolten D. 2013. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J. Membr. Sci. 431:139-55
    • (2013) J. Membr. Sci. , vol.431 , pp. 139-155
    • Low, B.T.1    Zhao, L.2    Merkel, T.C.3    Weber, M.4    Stolten, D.5
  • 66
    • 33744546077 scopus 로고    scopus 로고
    • Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases
    • Powell CE, Qiao GG. 2006. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 279:1-49
    • (2006) J. Membr. Sci. , vol.279 , pp. 1-49
    • Powell, C.E.1    Qiao, G.G.2
  • 70
    • 0026245917 scopus 로고
    • Correlation of separation factor versus permeability for polymeric membranes
    • Robeson LM. 1991. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62:165-85
    • (1991) J. Membr. Sci. , vol.62 , pp. 165-185
    • Robeson, L.M.1
  • 71
    • 46349102470 scopus 로고    scopus 로고
    • The upper bound revisited
    • Robeson LM. 2008. The upper bound revisited. J. Membr. Sci. 320:390-400
    • (2008) J. Membr. Sci. , vol.320 , pp. 390-400
    • Robeson, L.M.1
  • 72
    • 84871056498 scopus 로고    scopus 로고
    • Some approaches for high performance polymer based membranes for gas separation: Block copolymers, carbon molecular sieves andmixedmatrixmembranes
    • Buonomenna MG, Yave W, Golemme G. 2012. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves andmixedmatrixmembranes. RSC Adv. 2:10745
    • (2012) RSC Adv. , vol.2 , pp. 10745
    • Buonomenna, M.G.1    Yave, W.2    Golemme, G.3
  • 73
    • 81855169748 scopus 로고    scopus 로고
    • Recent developments on membranes for post-combustion carbon capture
    • Ramasubramanian K, Ho WW. 2011. Recent developments on membranes for post-combustion carbon capture. Curr. Opin. Chem. Eng. 1:47-54
    • (2011) Curr. Opin. Chem. Eng. , vol.1 , pp. 47-54
    • Ramasubramanian, K.1    Ho, W.W.2
  • 74
    • 84878245248 scopus 로고    scopus 로고
    • Large-scale screening of zeolite structures for CO2 membrane separations
    • Kim J, Abouelnasr M, Lin LC, Smit B. 2013. Large-scale screening of zeolite structures for CO2 membrane separations. J. Am. Chem. Soc. 135:7545-52
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 7545-7552
    • Kim, J.1    Abouelnasr, M.2    Lin, L.C.3    Smit, B.4
  • 75
    • 77954218573 scopus 로고    scopus 로고
    • In silico screening of zeolite membranes for CO2 capture
    • Krishna R, van Baten JM. 2010. In silico screening of zeolite membranes for CO2 capture. J. Membr. Sci. 360:323-33
    • (2010) J. Membr. Sci. , vol.360 , pp. 323-333
    • Krishna, R.1    Van Baten, J.M.2
  • 78
    • 0346665869 scopus 로고    scopus 로고
    • The permeability of hydrogen in bulk palladium at elevated temperatures and pressures
    • Morreale BD, Ciocco MV, Enick RM,Morsi BI,Howard BH, et al. 2003. The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. J. Membr. Sci. 212:87-97
    • (2003) J. Membr. Sci. , vol.212 , pp. 87-97
    • Morreale, B.D.1    Ciocco, M.V.2    Enick, R.M.3    Morsi, B.I.4    Howard, B.H.5
  • 79
    • 35748978205 scopus 로고    scopus 로고
    • Membranes for hydrogen separation
    • Ockwig NW, Nenoff TM. 2007. Membranes for hydrogen separation. Chem. Rev. 107:4078-110
    • (2007) Chem. Rev. , vol.107 , pp. 4078-4110
    • Ockwig, N.W.1    Nenoff, T.M.2
  • 80
    • 0036055372 scopus 로고    scopus 로고
    • Innovations in palladium membrane research
    • Paglieri S, Way J. 2002. Innovations in palladium membrane research. Sep. Purif. Rev. 31:1-169
    • (2002) Sep. Purif. Rev. , vol.31 , pp. 1-169
    • Paglieri, S.1    Way, J.2
  • 81
    • 78649914470 scopus 로고    scopus 로고
    • Membrane performance requirements for CO2 capture using H2-selective membranes in IGCC power plants
    • Ku AY, Kulkarni P, Shisler R, Wei W. 2011. Membrane performance requirements for CO2 capture using H2-selective membranes in IGCC power plants. J. Membr. Sci. 367:233-39
    • (2011) J. Membr. Sci. , vol.367 , pp. 233-239
    • Ku, A.Y.1    Kulkarni, P.2    Shisler, R.3    Wei, W.4
  • 84
    • 34548065921 scopus 로고    scopus 로고
    • Inorganic membranes for hydrogen production and purification: A critical review and perspective
    • Lu GQ, Diniz da Costa JC, Duke M, Giessler S, Socolow R, et al. 2007. Inorganic membranes for hydrogen production and purification: a critical review and perspective. J. Colloid Interface Sci. 314:589-603
    • (2007) J. Colloid Interface Sci. , vol.314 , pp. 589-603
    • Lu, G.Q.1    Diniz Da Costa, J.C.2    Duke, M.3    Giessler, S.4    Socolow, R.5
  • 85
    • 0038417519 scopus 로고    scopus 로고
    • Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide
    • Pesiri DR, Jorgensen B, Dye RC. 2003. Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 218:11-18
    • (2003) J. Membr. Sci. , vol.218 , pp. 11-18
    • Pesiri, D.R.1    Jorgensen, B.2    Dye, R.C.3
  • 86
    • 33746034587 scopus 로고    scopus 로고
    • Surface modification of polyimide membranes by diamines for H2 and CO2 separation
    • Chung TS, Shao L, Tin PS. 2006. Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol. Rapid Commun. 27:998-1003
    • (2006) Macromol. Rapid Commun. , vol.27 , pp. 998-1003
    • Chung, T.S.1    Shao, L.2    Tin, P.S.3
  • 87
    • 40549142786 scopus 로고    scopus 로고
    • Simultaneous occurrence of chemical grafting, crosslinking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation
    • Low BT, Xiao Y, Chung TS, Liu Y. 2008. Simultaneous occurrence of chemical grafting, crosslinking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules 41:1297-309
    • (2008) Macromolecules , vol.41 , pp. 1297-1309
    • Low, B.T.1    Xiao, Y.2    Chung, T.S.3    Liu, Y.4
  • 88
    • 40249085593 scopus 로고    scopus 로고
    • Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks
    • Hosseini SS, Teoh MM, Chung TS. 2008. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594-603
    • (2008) Polymer , vol.49 , pp. 1594-1603
    • Hosseini, S.S.1    Teoh, M.M.2    Chung, T.S.3
  • 89
    • 74649085061 scopus 로고    scopus 로고
    • Thermally rearranged (TR) poly (benzoxazoleco-pyrrolone) membranes tuned for high gas permeability and selectivity
    • Choi JI, Jung CH, Han SH, Park HB, Lee YM. 2010. Thermally rearranged (TR) poly (benzoxazoleco-pyrrolone) membranes tuned for high gas permeability and selectivity. J. Membr. Sci. 349:358-68
    • (2010) J. Membr. Sci. , vol.349 , pp. 358-368
    • Choi, J.I.1    Jung, C.H.2    Han, S.H.3    Park, H.B.4    Lee, Y.M.5
  • 90
    • 0343417068 scopus 로고    scopus 로고
    • Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous supportwall
    • SeaB-K,KusakabeK,Morooka S. 1997. Pore size control and gas permeation kinetics of silica membranes by pyrolysis of phenyl-substituted ethoxysilanes with cross-flow through a porous supportwall. J. Membr. Sci. 130:41-52
    • (1997) J. Membr. Sci. , vol.130 , pp. 41-52
    • Seab, K.1    Kusakabe, K.2    Morooka, S.3
  • 91
    • 15244343867 scopus 로고    scopus 로고
    • Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method
    • Nomura M, Ono K, Gopalakrishnan S, Sugawara T, Nakao S-I. 2005. Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method. J. Membr. Sci. 251:151-58
    • (2005) J. Membr. Sci. , vol.251 , pp. 151-158
    • Nomura, M.1    Ono, K.2    Gopalakrishnan, S.3    Sugawara, T.4    Nakao, S.-I.5
  • 92
  • 93
    • 0032513381 scopus 로고    scopus 로고
    • High-selectivity, high-flux silica membranes for gas separation
    • de Vos RM, Verweij H. 1998. High-selectivity, high-flux silica membranes for gas separation. Science 279:1710-11
    • (1998) Science , vol.279 , pp. 1710-1711
    • De Vos, R.M.1    Verweij, H.2
  • 94
    • 0031556187 scopus 로고    scopus 로고
    • Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation
    • Petersen J, Matsuda M, Haraya K. 1997. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. J. Membr. Sci. 131:85-94
    • (1997) J. Membr. Sci. , vol.131 , pp. 85-94
    • Petersen, J.1    Matsuda, M.2    Haraya, K.3
  • 95
    • 0032522336 scopus 로고    scopus 로고
    • Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis
    • Aoki K, Kusakabe K, Morooka S. 1998. Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J. Membr. Sci. 141:197-205
    • (1998) J. Membr. Sci. , vol.141 , pp. 197-205
    • Aoki, K.1    Kusakabe, K.2    Morooka, S.3
  • 100
    • 42349116073 scopus 로고    scopus 로고
    • Preparation and hydrogen permeation properties of thin Pd-Au alloy membranes supported on porous α-Alumina tube
    • Okazaki J, Pacheco Tanaka DA, Llosa Tanco MA, Wakui Y, Ikeda T, et al. 2008. Preparation and hydrogen permeation properties of thin Pd-Au alloy membranes supported on porous α-Alumina tube. Mater. Trans. 49:449-52
    • (2008) Mater. Trans. , vol.49 , pp. 449-452
    • Okazaki, J.1    Pacheco Tanaka, D.A.2    Llosa Tanco, M.A.3    Wakui, Y.4    Ikeda, T.5
  • 101
    • 0027675988 scopus 로고
    • Hydrogen transport through non-porous membranes of palladiumcoated niobium, tantalum and vanadium
    • Buxbaum RE, Marker T. 1993. Hydrogen transport through non-porous membranes of palladiumcoated niobium, tantalum and vanadium. J. Membr. Sci. 85:29-38
    • (1993) J. Membr. Sci. , vol.85 , pp. 29-38
    • Buxbaum, R.E.1    Marker, T.2
  • 102
  • 103
    • 0026133840 scopus 로고
    • Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics
    • Uemiya S, Matsuda T, Kikuchi E. 1991. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. J. Membr. Sci. 56:315-25
    • (1991) J. Membr. Sci. , vol.56 , pp. 315-325
    • Uemiya, S.1    Matsuda, T.2    Kikuchi, E.3
  • 104
    • 77955663842 scopus 로고    scopus 로고
    • Non-Pd BCC alloy membranes for industrial hydrogen separation
    • Dolan MD. 2010. Non-Pd BCC alloy membranes for industrial hydrogen separation. J. Membr. Sci. 362:12-28
    • (2010) J. Membr. Sci. , vol.362 , pp. 12-28
    • Dolan, M.D.1
  • 106
  • 107
    • 0037036783 scopus 로고    scopus 로고
    • Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas
    • Park J-H, Beum H-T, Kim J-N, Cho S-H. 2002. Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind. Eng. Chem. Res. 41:4122-31
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 4122-4131
    • Park, J.-H.1    Beum, H.-T.2    Kim, J.-N.3    Cho, S.-H.4
  • 108
    • 0037202206 scopus 로고    scopus 로고
    • Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon
    • Na B-K, Lee H, Koo K-K, Song HK. 2002. Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon. Ind. Eng. Chem. Res. 41:5498-503
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 5498-5503
    • Na, B.-K.1    Lee, H.2    Koo, K.-K.3    Song, H.K.4
  • 109
    • 33745651855 scopus 로고    scopus 로고
    • Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent
    • Reynolds SP, Ebner AD, Ritter JA. 2006. Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent. Ind. Eng. Chem. Res. 45:4278-94
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 4278-4294
    • Reynolds, S.P.1    Ebner, A.D.2    Ritter, J.A.3
  • 110
    • 41149115529 scopus 로고    scopus 로고
    • Heavy reflux PSA cycles for CO2 recovery from flue gas: Part i Performance evaluation
    • Reynolds SP, Mehrotra A, Ebner AD, Ritter JA. 2008. Heavy reflux PSA cycles for CO2 recovery from flue gas: part I. Performance evaluation. Adsorption 14:399-413
    • (2008) Adsorption , vol.14 , pp. 399-413
    • Reynolds, S.P.1    Mehrotra, A.2    Ebner, A.D.3    Ritter, J.A.4
  • 111
    • 40949146165 scopus 로고    scopus 로고
    • Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption
    • Zhang J, Webley PA. 2008. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption. Environ. Sci. Technol. 42:563-69
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 563-569
    • Zhang, J.1    Webley, P.A.2
  • 112
    • 0027693112 scopus 로고
    • Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption
    • Kikkinides ES, Yang RT, Cho SH. 1993. Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32:2714-20
    • (1993) Ind. Eng. Chem. Res. , vol.32 , pp. 2714-2720
    • Kikkinides, E.S.1    Yang, R.T.2    Cho, S.H.3
  • 113
    • 51849091557 scopus 로고    scopus 로고
    • Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption
    • Xiao P, Zhang J, Webley P, Li G, Singh R, Todd R. 2008. Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14:575-82
    • (2008) Adsorption , vol.14 , pp. 575-582
    • Xiao, P.1    Zhang, J.2    Webley, P.3    Li, G.4    Singh, R.5    Todd, R.6
  • 114
    • 36249005536 scopus 로고    scopus 로고
    • Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas
    • Zhang J, Webley PA, Xiao P. 2008. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers. Manag. 49:346-56
    • (2008) Energy Convers. Manag. , vol.49 , pp. 346-356
    • Zhang, J.1    Webley, P.A.2    Xiao, P.3
  • 115
    • 84859462016 scopus 로고    scopus 로고
    • Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas
    • Liu Z, Grande CA, Li P, Yu J, Rodrigues AE. 2011. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas. Sep. Purif. Technol. 81:307-17
    • (2011) Sep. Purif. Technol. , vol.81 , pp. 307-317
    • Liu, Z.1    Grande, C.A.2    Li, P.3    Yu, J.4    Rodrigues, A.E.5
  • 116
    • 8544219523 scopus 로고    scopus 로고
    • Recent advances in simulation and optimal design of pressure swing adsorption systems
    • Biegler LT, Jiang L, Fox VG. 2005. Recent advances in simulation and optimal design of pressure swing adsorption systems. Sep. Purif. Rev. 33:1-39
    • (2005) Sep. Purif. Rev. , vol.33 , pp. 1-39
    • Biegler, L.T.1    Jiang, L.2    Fox, V.G.3
  • 117
    • 27444446456 scopus 로고    scopus 로고
    • Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture
    • Ko D, Siriwardane R, Biegler LT. 2005. Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Ind. Eng. Chem. Res. 44:8084-94
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 8084-8094
    • Ko, D.1    Siriwardane, R.2    Biegler, L.T.3
  • 118
    • 8544225734 scopus 로고    scopus 로고
    • Simulation and optimal design of multiple-bed pressure swing adsorption systems
    • Jiang L, Fox VG, Biegler LT. 2004. Simulation and optimal design of multiple-bed pressure swing adsorption systems. AIChE J. 50:2904-17
    • (2004) AIChE J. , vol.50 , pp. 2904-2917
    • Jiang, L.1    Fox, V.G.2    Biegler, L.T.3
  • 119
    • 0038286510 scopus 로고    scopus 로고
    • Simulation and optimization of pressure-swing adsorption systems for air separation
    • Jiang L, Biegler LT, Fox VG. 2003. Simulation and optimization of pressure-swing adsorption systems for air separation. AIChE J. 49:1140-57
    • (2003) AIChE J. , vol.49 , pp. 1140-1157
    • Jiang, L.1    Biegler, L.T.2    Fox, V.G.3
  • 120
    • 0037962057 scopus 로고    scopus 로고
    • Cyclic adsorption separation processes: Analysis strategy and optimization procedure
    • Cruz P, Santos JC, Magalh̃aes FD, Mendes A. 2003. Cyclic adsorption separation processes: analysis strategy and optimization procedure. Chem. Eng. Sci. 58:3143-58
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 3143-3158
    • Cruz, P.1    Santos, J.C.2    Magalh̃aes, F.D.3    Mendes, A.4
  • 121
    • 19844373837 scopus 로고    scopus 로고
    • On the optimization of cyclic adsorption separation processes
    • Cruz P, Magalh̃aes FD, Mendes A. 2005. On the optimization of cyclic adsorption separation processes. AIChE J. 51:1377-95
    • (2005) AIChE J. , vol.51 , pp. 1377-1395
    • Cruz, P.1    Magalh̃aes, F.D.2    Mendes, A.3
  • 122
    • 84875449392 scopus 로고    scopus 로고
    • Multiobjective optimization of a four-step adsorption process for postcombustionCO2 capture via finite volume simulation
    • Haghpanah R, Majumder A, Nilam R, Rajendran A, Farooq S, et al. 2013. Multiobjective optimization of a four-step adsorption process for postcombustionCO2 capture via finite volume simulation. Ind. Eng. Chem. Res. 52:4249-65
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 4249-4265
    • Haghpanah, R.1    Majumder, A.2    Nilam, R.3    Rajendran, A.4    Farooq, S.5
  • 123
    • 84887620810 scopus 로고    scopus 로고
    • Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture
    • Haghpanah R, Nilam R, Rajendran A, Farooq S, Karimi IA. 2013. Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 59:4735-48
    • (2013) AIChE J. , vol.59 , pp. 4735-4748
    • Haghpanah, R.1    Nilam, R.2    Rajendran, A.3    Farooq, S.4    Karimi, I.A.5
  • 126
    • 79958026463 scopus 로고    scopus 로고
    • Carbon capture in metal-organic frameworks-A comparative study
    • Simmons JM, Wu H, Zhou W, Yildirim T. 2011. Carbon capture in metal-organic frameworks-A comparative study. Energy Environ. Sci. 4:2177-85
    • (2011) Energy Environ. Sci. , vol.4 , pp. 2177-2185
    • Simmons, J.M.1    Wu, H.2    Zhou, W.3    Yildirim, T.4
  • 127
    • 79958032450 scopus 로고    scopus 로고
    • In silico screening of metal-organic frameworks in separation applications
    • Krishna R, van Baten JM. 2011. In silico screening of metal-organic frameworks in separation applications. Phys. Chem. Chem. Phys. 13:10593-616
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 10593-10616
    • Krishna, R.1    Van Baten, J.M.2
  • 128
    • 79959857761 scopus 로고    scopus 로고
    • Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber
    • Krishna R, Long JR. 2011. Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber. J. Phys. Chem. C 115:12941-50
    • (2011) J. Phys. Chem. C , vol.115 , pp. 12941-12950
    • Krishna, R.1    Long, J.R.2
  • 129
    • 7944221298 scopus 로고    scopus 로고
    • An experimental adsorbent screening study for CO2 removal from N2
    • Harlick PJE, Tezel FH. 2004. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76:71-79
    • (2004) Microporous Mesoporous Mater. , vol.76 , pp. 71-79
    • Harlick, P.J.E.1    Tezel, F.H.2
  • 131
    • 77953911276 scopus 로고    scopus 로고
    • Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses
    • Zhao L, Riensche E, Blum L, Stolten D. 2010. Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses. J. Membr. Sci. 359:160-72
    • (2010) J. Membr. Sci. , vol.359 , pp. 160-172
    • Zhao, L.1    Riensche, E.2    Blum, L.3    Stolten, D.4
  • 132
    • 84875341871 scopus 로고    scopus 로고
    • Techno-economic assessment of polymer membrane systems for post-membrane technology. Combustion carbon capture at coal-fired power plants
    • Zhai H, Rubin ES. 2013. Techno-economic assessment of polymer membrane systems for post-membrane technology. combustion carbon capture at coal-fired power plants. Environ. Sci. Technol. 47:3006-14
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 3006-3014
    • Zhai, H.1    Rubin, E.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.