메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

Multifault diagnosis for rolling element bearings based on intrinsic mode permutation entropy and ensemble optimal extreme learning machine

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84902164758     PISSN: 16878132     EISSN: 16878140     Source Type: Journal    
DOI: 10.1155/2014/803919     Document Type: Article
Times cited : (21)

References (32)
  • 1
    • 78649600770 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics - A tutorial
    • 2-s2.0-78649600770 10.1016/j.ymssp.2010.07.017
    • Randall R. B., Antoni J., Rolling element bearing diagnostics-a tutorial. Mechanical Systems and Signal Processing 2011 25 2 485 520 2-s2.0-78649600770 10.1016/j.ymssp.2010.07.017
    • (2011) Mechanical Systems and Signal Processing , vol.25 , Issue.2 , pp. 485-520
    • Randall, R.B.1    Antoni, J.2
  • 2
    • 80052802541 scopus 로고    scopus 로고
    • Identification of bearing faults using time domain zero-crossings
    • 2-s2.0-80052802541 10.1016/j.ymssp.2011.06.001
    • William P. E., Hoffman M. W., Identification of bearing faults using time domain zero-crossings. Mechanical Systems and Signal Processing 2011 25 8 3078 3088 2-s2.0-80052802541 10.1016/j.ymssp.2011.06.001
    • (2011) Mechanical Systems and Signal Processing , vol.25 , Issue.8 , pp. 3078-3088
    • William, P.E.1    Hoffman, M.W.2
  • 3
    • 84878734589 scopus 로고    scopus 로고
    • Design of online monitoring and fault diagnosis system for belt conveyors based on wavelet packet decomposition and support vector machine
    • 797183 10.1155/2013/797183
    • Li W., Wang Z. W., Zhu Z. C., Zhou G. B., Chen G. A., Design of online monitoring and fault diagnosis system for belt conveyors based on wavelet packet decomposition and support vector machine. Advances in Mechanical Engineering 2013 2013 10 797183 10.1155/2013/797183
    • (2013) Advances in Mechanical Engineering , vol.2013 , pp. 10
    • Li, W.1    Wang, Z.W.2    Zhu, Z.C.3    Zhou, G.B.4    Chen, G.A.5
  • 4
    • 84877253483 scopus 로고    scopus 로고
    • Detection of early faults in rotating machinery based on wavelet analysis
    • 2-s2.0-84877253483 10.1155/2013/625863 625863
    • Lim M. H., Leong M. S., Detection of early faults in rotating machinery based on wavelet analysis. Advances in Mechanical Engineering 2013 2013 8 2-s2.0-84877253483 10.1155/2013/625863 625863
    • (2013) Advances in Mechanical Engineering , vol.2013 , pp. 8
    • Lim, M.H.1    Leong, M.S.2
  • 5
    • 84884857481 scopus 로고    scopus 로고
    • Study on immune relevant vector machine based intelligent fault detection and diagnosis algorithm
    • 548248 10.1155/2013/548248
    • Miao Z. H., Zhou G. X., Wang X. H., He C. X., Study on immune relevant vector machine based intelligent fault detection and diagnosis algorithm. Advances in Mechanical Engineering 2013 2013 8 548248 10.1155/2013/548248
    • (2013) Advances in Mechanical Engineering , vol.2013 , pp. 8
    • Miao, Z.H.1    Zhou, G.X.2    Wang, X.H.3    He, C.X.4
  • 7
    • 79951580715 scopus 로고    scopus 로고
    • Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions
    • 2-s2.0-79951580715 10.1016/j.ymssp.2010.10.002
    • Ricci R., Pennacchi P., Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions. Mechanical Systems and Signal Processing 2011 25 3 821 838 2-s2.0-79951580715 10.1016/j.ymssp.2010.10.002
    • (2011) Mechanical Systems and Signal Processing , vol.25 , Issue.3 , pp. 821-838
    • Ricci, R.1    Pennacchi, P.2
  • 8
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • 2-s2.0-80052078099 10.1142/S1793536909000047
    • Huang N. E., Wu Z., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis 2009 1 1 41 2-s2.0-80052078099 10.1142/S1793536909000047
    • (2009) Advances in Adaptive Data Analysis , vol.1 , pp. 1-41
    • Huang, N.E.1    Wu, Z.2
  • 9
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • 2-s2.0-84870404381 10.1016/j.ymssp.2012.09.015
    • Lei Y. G., Lin J., He Z. J., Zuo M. J., A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing 2013 35 1-2 108 126 2-s2.0-84870404381 10.1016/j.ymssp.2012. 09.015
    • (2013) Mechanical Systems and Signal Processing , vol.35 , Issue.1-2 , pp. 108-126
    • Lei, Y.G.1    Lin, J.2    He, Z.J.3    Zuo, M.J.4
  • 10
    • 84880877946 scopus 로고    scopus 로고
    • Fault diagnosis of rolling bearing based on wavelet package transform and ensemble empirical mode decomposition
    • 792584 10.1155/2013/792584
    • Liu Q., Chen F., Zhou Z. D., Wei Q., Fault diagnosis of rolling bearing based on wavelet package transform and ensemble empirical mode decomposition. Advances in Mechanical Engineering 2013 2013 6 792584 10.1155/2013/792584
    • (2013) Advances in Mechanical Engineering , vol.2013 , pp. 6
    • Liu, Q.1    Chen, F.2    Zhou, Z.D.3    Wei, Q.4
  • 11
    • 77955828738 scopus 로고    scopus 로고
    • The use of ensemble empirical mode decomposition to improve bispectral analysis for fault detection in rotating machinery
    • 2-s2.0-77955828738 10.1243/09544062JMES1827
    • Lei Y., Zuo M., Hoseini M., The use of ensemble empirical mode decomposition to improve bispectral analysis for fault detection in rotating machinery. Proceedings of the Institution of Mechanical Engineers C: Journal of Mechanical Engineering Science 2010 224 8 1759 1769 2-s2.0-77955828738 10.1243/09544062JMES1827
    • (2010) Proceedings of the Institution of Mechanical Engineers C: Journal of Mechanical Engineering Science , vol.224 , Issue.8 , pp. 1759-1769
    • Lei, Y.1    Zuo, M.2    Hoseini, M.3
  • 12
    • 58949088453 scopus 로고    scopus 로고
    • Application of the EEMD method to rotor fault diagnosis of rotating machinery
    • 2-s2.0-58949088453 10.1016/j.ymssp.2008.11.005
    • Lei Y. G., He Z. J., Zi Y. Y., Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing 2009 23 4 1327 1338 2-s2.0-58949088453 10.1016/j.ymssp.2008.11.005
    • (2009) Mechanical Systems and Signal Processing , vol.23 , Issue.4 , pp. 1327-1338
    • Lei, Y.G.1    He, Z.J.2    Zi, Y.Y.3
  • 13
    • 84885611750 scopus 로고    scopus 로고
    • Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
    • 10.1016/j.ymssp.2013.07.006
    • Zhang X., Zhou J., Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines. Mechanical Systems and Signal Processing 2013 41 1-2 127 140 10.1016/j.ymssp.2013.07.006
    • (2013) Mechanical Systems and Signal Processing , vol.41 , Issue.1-2 , pp. 127-140
    • Zhang, X.1    Zhou, J.2
  • 14
    • 84859163659 scopus 로고    scopus 로고
    • Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition
    • 2-s2.0-84859163659 10.1016/j.measurement.2012.01.001
    • Guo W., Tse P. W., Djordjevich A., Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition. Measurement 2012 45 5 1308 1322 2-s2.0-84859163659 10.1016/j.measurement.2012.01.001
    • (2012) Measurement , vol.45 , Issue.5 , pp. 1308-1322
    • Guo, W.1    Tse, P.W.2    Djordjevich, A.3
  • 15
    • 33750528937 scopus 로고    scopus 로고
    • Approximate Entropy as a diagnostic tool for machine health monitoring
    • DOI 10.1016/j.ymssp.2006.02.009, PII S0888327006000458
    • Yan R. Q., Gao R. X., Approximate entropy as a diagnostic tool for machine health monitoring. Mechanical Systems and Signal Processing 2007 21 2 824 839 2-s2.0-33750528937 10.1016/j.ymssp.2006.02.009 (Pubitemid 44667421)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.2 , pp. 824-839
    • Yan, R.1    Gao, R.X.2
  • 16
    • 77951207585 scopus 로고    scopus 로고
    • Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference
    • 2-s2.0-77951207585 10.1016/j.eswa.2010.02.118
    • Zhang L., Xiong G., Liu H., Zou H., Guo W., Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Systems with Applications 2010 37 8 6077 6085 2-s2.0-77951207585 10.1016/j.eswa.2010.02.118
    • (2010) Expert Systems with Applications , vol.37 , Issue.8 , pp. 6077-6085
    • Zhang, L.1    Xiong, G.2    Liu, H.3    Zou, H.4    Guo, W.5
  • 17
    • 81855221797 scopus 로고    scopus 로고
    • Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
    • 2-s2.0-81855221797 10.1016/j.eswa.2011.07.008
    • Nicolaou N., Georgiou J., Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Systems with Applications 2012 39 1 202 209 2-s2.0-81855221797 10.1016/j.eswa.2011.07.008
    • (2012) Expert Systems with Applications , vol.39 , Issue.1 , pp. 202-209
    • Nicolaou, N.1    Georgiou, J.2
  • 18
    • 84859427324 scopus 로고    scopus 로고
    • Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines
    • 2-s2.0-84859427324 10.1016/j.ymssp.2011.11.022
    • Yan R. Q., Liu Y. B., Gao R. X., Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines. Mechanical Systems and Signal Processing 2012 29 474 484 2-s2.0-84859427324 10.1016/j.ymssp.2011.11.022
    • (2012) Mechanical Systems and Signal Processing , vol.29 , pp. 474-484
    • Yan, R.Q.1    Liu, Y.B.2    Gao, R.X.3
  • 19
    • 34247251291 scopus 로고    scopus 로고
    • Intrinsic mode entropy for nonlinear discriminant analysis
    • DOI 10.1109/LSP.2006.888089
    • Amoud H., Snoussi H., Hewson D., Doussot M., Duchene J., Intrinsic mode entropy for nonlinear discriminant analysis. IEEE Signal Processing Letters 2007 14 5 297 300 2-s2.0-34247251291 10.1109/LSP.2006.888089 (Pubitemid 46614464)
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.5 , pp. 297-300
    • Amoud, H.1    Snoussi, H.2    Hewson, D.3    Doussot, M.4    Duchene, J.5
  • 20
    • 80051669013 scopus 로고    scopus 로고
    • A study on effectiveness of extreme learning machine
    • 2-s2.0-80051669013 10.1016/j.neucom.2010.11.030
    • Wang Y. G., Cao F. L., Yuan Y. B., A study on effectiveness of extreme learning machine. Neurocomputing 2011 74 16 2483 2490 2-s2.0-80051669013 10.1016/j.neucom.2010.11.030
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2483-2490
    • Wang, Y.G.1    Cao, F.L.2    Yuan, Y.B.3
  • 21
    • 84863876822 scopus 로고    scopus 로고
    • A comparative analysis of support vector machines and extreme learning machines
    • 2-s2.0-84863876822 10.1016/j.neunet.2012.04.002
    • Liu X. Y., Gao C. H., Li P., A comparative analysis of support vector machines and extreme learning machines. Neural Networks 2012 33 58 66 2-s2.0-84863876822 10.1016/j.neunet.2012.04.002
    • (2012) Neural Networks , vol.33 , pp. 58-66
    • Liu, X.Y.1    Gao, C.H.2    Li, P.3
  • 22
    • 84878507977 scopus 로고    scopus 로고
    • An improved evolutionary extreme learning machine based on particle swarm optimization
    • 2-s2.0-84867653883 10.1016/j.neucom.2011.12.062
    • Han F., Yao H. F., Ling Q. H., An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 2012 116 87 93 2-s2.0-84867653883 10.1016/j.neucom.2011.12.062
    • (2012) Neurocomputing , vol.116 , pp. 87-93
    • Han, F.1    Yao, H.F.2    Ling, Q.H.3
  • 23
    • 84869885866 scopus 로고    scopus 로고
    • Self-adaptive evolutionary extreme learning machine
    • 2-s2.0-84869885866 10.1007/s11063-012-9236-y
    • Cao J. W., Lin Z. P., Huang G. B., Self-adaptive evolutionary extreme learning machine. Neural Processing Letters 2012 36 3 285 305 2-s2.0-84869885866 10.1007/s11063-012-9236-y
    • (2012) Neural Processing Letters , vol.36 , Issue.3 , pp. 285-305
    • Cao, J.W.1    Lin, Z.P.2    Huang, G.B.3
  • 25
    • 77954304408 scopus 로고    scopus 로고
    • Ensemble based extreme learning machine
    • 2-s2.0-77954304408 10.1109/LSP.2010.2053356
    • Liu N., Wang H., Ensemble based extreme learning machine. IEEE Signal Processing Letters 2010 17 8 754 757 2-s2.0-77954304408 10.1109/LSP.2010.2053356
    • (2010) IEEE Signal Processing Letters , vol.17 , Issue.8 , pp. 754-757
    • Liu, N.1    Wang, H.2
  • 26
  • 27
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • DOI 10.1016/j.neucom.2005.12.126, PII S0925231206000385
    • Huang G.-B., Zhu Q.-Y., Siew C.-K., Extreme learning machine: theory and applications. Neurocomputing 2006 70 1-3 489 501 2-s2.0-33745903481 10.1016/j.neucom.2005.12.126 (Pubitemid 44615772)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 28
    • 67349273050 scopus 로고    scopus 로고
    • A comparative study of artificial bee colony algorithm
    • 2-s2.0-67349273050 10.1016/j.amc.2009.03.090
    • Karaboga D., Akay B., A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 2009 214 1 108 132 2-s2.0-67349273050 10.1016/j.amc.2009.03.090
    • (2009) Applied Mathematics and Computation , vol.214 , Issue.1 , pp. 108-132
    • Karaboga, D.1    Akay, B.2
  • 29
    • 84859433868 scopus 로고    scopus 로고
    • Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine
    • 2-s2.0-84859433868 10.1016/j.ymssp.2011.11.015
    • Wang Y. J., Kang S. Q., Jiang Y. C., Yang G. X., Song L. X., Mikulovich V. I., Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine. Mechanical Systems and Signal Processing 2012 29 404 414 2-s2.0-84859433868 10.1016/j.ymssp.2011.11.015
    • (2012) Mechanical Systems and Signal Processing , vol.29 , pp. 404-414
    • Wang, Y.J.1    Kang, S.Q.2    Jiang, Y.C.3    Yang, G.X.4    Song, L.X.5    Mikulovich, V.I.6
  • 30
    • 84885661664 scopus 로고    scopus 로고
    • Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis
    • 10.1016/j.ymssp.2013.05.017
    • Jiang L., Xuan J., Shi T., Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis. Mechanical Systems and Signal Processing 2013 41 1-2 113 126 10.1016/j.ymssp.2013.05.017
    • (2013) Mechanical Systems and Signal Processing , vol.41 , Issue.1-2 , pp. 113-126
    • Jiang, L.1    Xuan, J.2    Shi, T.3
  • 31
    • 84885551457 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm
    • 10.1016/j.measurement.2013.09.019
    • Zhu K., Song X., Xue D., A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm. Measurement 2014 47 669 675 10.1016/j.measurement.2013. 09.019
    • (2014) Measurement , vol.47 , pp. 669-675
    • Zhu, K.1    Song, X.2    Xue, D.3
  • 32
    • 37349079091 scopus 로고    scopus 로고
    • Cleveland, Ohio, USA Case Western Reserve University
    • Loparo K., Bearings Vibration Data Set 2003 Cleveland, Ohio, USA Case Western Reserve University
    • (2003) Bearings Vibration Data Set
    • Loparo, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.