-
1
-
-
73949154686
-
OP-ELM: Optimally Pruned Extreme Learning Machine
-
Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A. OP-ELM: Optimally Pruned Extreme Learning Machine. IEEE Trans. Neural Networks 2010, 21(1):158-162.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
2
-
-
0000759063
-
Radial basis probabilistic neural networks: model and application
-
Huang D.S. Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recognition Artif. Intell. 1999, 13(7):1083-1101.
-
(1999)
Int. J. Pattern Recognition Artif. Intell.
, vol.13
, Issue.7
, pp. 1083-1101
-
-
Huang, D.S.1
-
4
-
-
57749092656
-
A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
-
Huang D.S., Du Ji-Xiang A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Networks 2008, 19(12):2099-2115.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.12
, pp. 2099-2115
-
-
Huang, D.S.1
Du, J.-X.2
-
5
-
-
33745903481
-
Extreme Learning Machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme Learning Machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
6
-
-
33748432957
-
Improved extreme learning machine for function approximation by encoding a priori information
-
Han F., Huang D.S. Improved extreme learning machine for function approximation by encoding a priori information. Neurocomputing 2006, 69(16-18):2369-2373.
-
(2006)
Neurocomputing
, vol.69
, Issue.16-18
, pp. 2369-2373
-
-
Han, F.1
Huang, D.S.2
-
7
-
-
2442503670
-
A constructive approach for finding arbitrary roots of polynomials by neural networks
-
Huang D.S. A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans. Neural Networks 2004, 15(2):477-491.
-
(2004)
IEEE Trans. Neural Networks
, vol.15
, Issue.2
, pp. 477-491
-
-
Huang, D.S.1
-
8
-
-
24944586784
-
Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method
-
Huang D.S., Chi Zheru Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method. Sci. China Ser. F. Inf. Sci. 2004, 47(2):232-245.
-
(2004)
Sci. China Ser. F. Inf. Sci.
, vol.47
, Issue.2
, pp. 232-245
-
-
Huang, D.S.1
Chi, Z.2
-
9
-
-
3042584634
-
A neural root finder of polynomials based on root moments
-
Huang D.S., Ip Horace H.S., Chi Zheru A neural root finder of polynomials based on root moments. Neural Comput. 2004, 16(8):1721-1762.
-
(2004)
Neural Comput.
, vol.16
, Issue.8
, pp. 1721-1762
-
-
Huang, D.S.1
Ip, H.H.S.2
Chi, Z.3
-
10
-
-
0032099284
-
The local minima free condition of feedforward neural networks for outer-supervised learning
-
Huang D.S. The local minima free condition of feedforward neural networks for outer-supervised learning. IEEE Trans on Syst. Man Cybern. 1998, 28(3):477-480.
-
(1998)
IEEE Trans on Syst. Man Cybern.
, vol.28
, Issue.3
, pp. 477-480
-
-
Huang, D.S.1
-
11
-
-
19344364336
-
Zeroing polynomials using modified constrained neural network approach
-
Huang D.S., Ip Horace H.S., Law K.C., Chi Zheru Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Networks 2005, 16(3):721-732.
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.3
, pp. 721-732
-
-
Huang, D.S.1
Ip, H.H.S.2
Law, K.C.3
Chi, Z.4
-
12
-
-
0037474728
-
Dilation method for finding close roots of polynomials based on constrained learning neural networks
-
Huang D.S., Ip Horace H.S., Chi Zheru, Wong H.S. Dilation method for finding close roots of polynomials based on constrained learning neural networks. Phys. Lett. A 2003, 309(5-6):443-451.
-
(2003)
Phys. Lett. A
, vol.309
, Issue.5-6
, pp. 443-451
-
-
Huang, D.S.1
Ip, H.H.S.2
Chi, Z.3
Wong, H.S.4
-
13
-
-
10944272650
-
Extreme Learning Machine: a new learning scheme of feedforward neural networks
-
Budapest, Hungary, July 25-29
-
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme Learning Machine: a new learning scheme of feedforward neural networks, 2004 International Joint Conference on Neural Networks (IJCNN'2004), Budapest, Hungary, July 25-29, 2004,pp. 985-990.
-
(2004)
2004 International Joint Conference on Neural Networks (IJCNN'2004)
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
14
-
-
22844440904
-
Evolutionary extreme learning machine
-
Zhu Q.-Y., Qin A.K., Suganthan P.N., Huang G.-B. Evolutionary extreme learning machine. Pattern Recognition 2005, 38(10):1759-1763.
-
(2005)
Pattern Recognition
, vol.38
, Issue.10
, pp. 1759-1763
-
-
Zhu, Q.-Y.1
Qin, A.K.2
Suganthan, P.N.3
Huang, G.-B.4
-
15
-
-
77949614014
-
On improving the conditioning of extreme learning machine: a linear case
-
(ICICS2009), Maucu, China, December 8-10, 2009
-
G.P. Zhao, Z.Q. hen, C.Y. Miao, Z.H. Man, On improving the conditioning of extreme learning machine: a linear case, 7th International Conference on Information, Communications and Signal Processing, 2009 (ICICS2009), Maucu, China, December 8-10, 2009, pp. 1-5.
-
(2009)
7th International Conference on Information, Communications and Signal Processing
, pp. 1-5
-
-
Zhao, G.P.1
Hen, Z.Q.2
Miao, C.Y.3
Man, Z.H.4
-
16
-
-
33747430130
-
Locating and tracking multiple dynamic optima by a particle swarm model using speciation
-
Daniel Parrott, Xiaodong Li Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 2006, 10(4):440-458.
-
(2006)
IEEE Trans. Evol. Comput.
, vol.10
, Issue.4
, pp. 440-458
-
-
Daniel, P.1
Xiaodong, L.2
-
17
-
-
34948868342
-
Evolving problems to learn about particle swarm optimizers and other search algorithms
-
Langdon W.B., Poli Riccardo Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Trans. Evol. Comput. 2007, 11(5):561-578.
-
(2007)
IEEE Trans. Evol. Comput.
, vol.11
, Issue.5
, pp. 561-578
-
-
Langdon, W.B.1
Poli, R.2
-
18
-
-
33745903382
-
Evolutionary extreme learning machine-based on particle swarm optimization
-
LNCS
-
You Xu, Yang Shu, Evolutionary extreme learning machine-based on particle swarm optimization, International Symposium on Neural Networks 2006 (ISNN2006), LNCS, vol. 3971, 2006, pp. 644-652.
-
(2006)
International Symposium on Neural Networks 2006 (ISNN2006)
, vol.3971
, pp. 644-652
-
-
Xu, Y.1
Shu, Y.2
-
19
-
-
0029517385
-
A new optimizer using particles swarm theory
-
Nagoya, Japan
-
R.C. Eberhart, J. Kennedy, A new optimizer using particles swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human science, Nagoya, Japan, 1995, pp. 39-43.
-
(1995)
Proceedings of the Sixth International Symposium on Micro Machine and Human science
, pp. 39-43
-
-
Eberhart, R.C.1
Kennedy, J.2
-
20
-
-
0029535737
-
Particle swarm optimization
-
Perth, Australia
-
R.C. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceeding of the IEEE International Conference on Neural Network, Perth, Australia, 1995, pp. 1942-1948.
-
(1995)
Proceeding of the IEEE International Conference on Neural Network
, pp. 1942-1948
-
-
Eberhart, R.C.1
Kennedy, J.2
-
23
-
-
9144229588
-
A hierarchical method for finding optimal architecture and weights using evolutionary least square based learning
-
Ghosh R., Verma B. A hierarchical method for finding optimal architecture and weights using evolutionary least square based learning. Int. J. Neural Syst. 2003, 12(1):13-24.
-
(2003)
Int. J. Neural Syst.
, vol.12
, Issue.1
, pp. 13-24
-
-
Ghosh, R.1
Verma, B.2
-
24
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
-
Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44(2):525-536.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
|