메뉴 건너뛰기




Volumn 116, Issue , 2013, Pages 87-93

An improved evolutionary extreme learning machine based on particle swarm optimization

Author keywords

Convergence rate; Extreme learning machine; Generalization performance; Particle swarm optimization

Indexed keywords

CONVERGENCE RATES; EFFICIENCY AND EFFECTIVENESS; EXTREME LEARNING MACHINE; GENERALIZATION PERFORMANCE; HYBRID LEARNING ALGORITHM; NUMBER OF HIDDEN NEURONS; PARTICLE SWARM OPTIMIZATION ALGORITHM; ROOT MEAN SQUARED ERRORS;

EID: 84878507977     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.12.062     Document Type: Article
Times cited : (228)

References (24)
  • 2
    • 0000759063 scopus 로고    scopus 로고
    • Radial basis probabilistic neural networks: model and application
    • Huang D.S. Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recognition Artif. Intell. 1999, 13(7):1083-1101.
    • (1999) Int. J. Pattern Recognition Artif. Intell. , vol.13 , Issue.7 , pp. 1083-1101
    • Huang, D.S.1
  • 4
    • 57749092656 scopus 로고    scopus 로고
    • A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
    • Huang D.S., Du Ji-Xiang A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Networks 2008, 19(12):2099-2115.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.12 , pp. 2099-2115
    • Huang, D.S.1    Du, J.-X.2
  • 5
    • 33745903481 scopus 로고    scopus 로고
    • Extreme Learning Machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme Learning Machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 6
    • 33748432957 scopus 로고    scopus 로고
    • Improved extreme learning machine for function approximation by encoding a priori information
    • Han F., Huang D.S. Improved extreme learning machine for function approximation by encoding a priori information. Neurocomputing 2006, 69(16-18):2369-2373.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2369-2373
    • Han, F.1    Huang, D.S.2
  • 7
    • 2442503670 scopus 로고    scopus 로고
    • A constructive approach for finding arbitrary roots of polynomials by neural networks
    • Huang D.S. A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans. Neural Networks 2004, 15(2):477-491.
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.2 , pp. 477-491
    • Huang, D.S.1
  • 8
    • 24944586784 scopus 로고    scopus 로고
    • Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method
    • Huang D.S., Chi Zheru Finding roots of arbitrary high order polynomials based on neural network recursive partitioning method. Sci. China Ser. F. Inf. Sci. 2004, 47(2):232-245.
    • (2004) Sci. China Ser. F. Inf. Sci. , vol.47 , Issue.2 , pp. 232-245
    • Huang, D.S.1    Chi, Z.2
  • 9
    • 3042584634 scopus 로고    scopus 로고
    • A neural root finder of polynomials based on root moments
    • Huang D.S., Ip Horace H.S., Chi Zheru A neural root finder of polynomials based on root moments. Neural Comput. 2004, 16(8):1721-1762.
    • (2004) Neural Comput. , vol.16 , Issue.8 , pp. 1721-1762
    • Huang, D.S.1    Ip, H.H.S.2    Chi, Z.3
  • 10
    • 0032099284 scopus 로고    scopus 로고
    • The local minima free condition of feedforward neural networks for outer-supervised learning
    • Huang D.S. The local minima free condition of feedforward neural networks for outer-supervised learning. IEEE Trans on Syst. Man Cybern. 1998, 28(3):477-480.
    • (1998) IEEE Trans on Syst. Man Cybern. , vol.28 , Issue.3 , pp. 477-480
    • Huang, D.S.1
  • 11
    • 19344364336 scopus 로고    scopus 로고
    • Zeroing polynomials using modified constrained neural network approach
    • Huang D.S., Ip Horace H.S., Law K.C., Chi Zheru Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Networks 2005, 16(3):721-732.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 721-732
    • Huang, D.S.1    Ip, H.H.S.2    Law, K.C.3    Chi, Z.4
  • 12
    • 0037474728 scopus 로고    scopus 로고
    • Dilation method for finding close roots of polynomials based on constrained learning neural networks
    • Huang D.S., Ip Horace H.S., Chi Zheru, Wong H.S. Dilation method for finding close roots of polynomials based on constrained learning neural networks. Phys. Lett. A 2003, 309(5-6):443-451.
    • (2003) Phys. Lett. A , vol.309 , Issue.5-6 , pp. 443-451
    • Huang, D.S.1    Ip, H.H.S.2    Chi, Z.3    Wong, H.S.4
  • 16
    • 33747430130 scopus 로고    scopus 로고
    • Locating and tracking multiple dynamic optima by a particle swarm model using speciation
    • Daniel Parrott, Xiaodong Li Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 2006, 10(4):440-458.
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.4 , pp. 440-458
    • Daniel, P.1    Xiaodong, L.2
  • 17
    • 34948868342 scopus 로고    scopus 로고
    • Evolving problems to learn about particle swarm optimizers and other search algorithms
    • Langdon W.B., Poli Riccardo Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Trans. Evol. Comput. 2007, 11(5):561-578.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.5 , pp. 561-578
    • Langdon, W.B.1    Poli, R.2
  • 18
    • 33745903382 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine-based on particle swarm optimization
    • LNCS
    • You Xu, Yang Shu, Evolutionary extreme learning machine-based on particle swarm optimization, International Symposium on Neural Networks 2006 (ISNN2006), LNCS, vol. 3971, 2006, pp. 644-652.
    • (2006) International Symposium on Neural Networks 2006 (ISNN2006) , vol.3971 , pp. 644-652
    • Xu, Y.1    Shu, Y.2
  • 23
    • 9144229588 scopus 로고    scopus 로고
    • A hierarchical method for finding optimal architecture and weights using evolutionary least square based learning
    • Ghosh R., Verma B. A hierarchical method for finding optimal architecture and weights using evolutionary least square based learning. Int. J. Neural Syst. 2003, 12(1):13-24.
    • (2003) Int. J. Neural Syst. , vol.12 , Issue.1 , pp. 13-24
    • Ghosh, R.1    Verma, B.2
  • 24
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44(2):525-536.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.