메뉴 건너뛰기




Volumn 7, Issue 1, 2014, Pages

Semi-supervised consensus clustering for gene expression data analysis

Author keywords

Consensus clustering; Gene expression; Semi supervised clustering; Semi supervised consensus clustering

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; CONSENSUS; DATA ANALYSIS; GENE EXPRESSION; KNOWLEDGE; PRIORITY JOURNAL; TUMOR GENE;

EID: 84901688624     PISSN: None     EISSN: 17560381     Source Type: Journal    
DOI: 10.1186/1756-0381-7-7     Document Type: Article
Times cited : (32)

References (31)
  • 1
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • 10.1023/A:1023949509487
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Monti S, Tamayo P, Mesirov J, Golub T, Mach Learn 2003 52 91 118 10.1023/A:1023949509487
    • (2003) Mach Learn , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 2
    • 36448947175 scopus 로고    scopus 로고
    • Graph-based consensus clustering for class discovery from gene expression data
    • DOI 10.1093/bioinformatics/btm463
    • Graph-based consensus clustering for class discovery from gene expression data. Yu Z, Wong H, Wang H, Bioinformatics 2007 23 2888 2896 10.1093/bioinformatics/btm463 17872912 (Pubitemid 350162895)
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2888-2896
    • Yu, Z.1    Wong, H.-D.2    Wang, H.3
  • 3
    • 70349730070 scopus 로고    scopus 로고
    • Multi-k: Accurate classification of microarray subtypes using ensemble k-means clustering
    • 19698124
    • Multi-k: accurate classification of microarray subtypes using ensemble k-means clustering. Kim E, Kim S, Ashlock D, Nam D, Bioinformatics 2009 10 260 19698124
    • (2009) Bioinformatics , vol.10 , pp. 260
    • Kim, E.1    Kim, S.2    Ashlock, D.3    Nam, D.4
  • 4
    • 77954195198 scopus 로고    scopus 로고
    • LCE: A link-based cluster ensemble method for improved gene expression data analysis
    • 10.1093/bioinformatics/btq226 20444838
    • LCE: a link-based cluster ensemble method for improved gene expression data analysis. Lam-on N, Boongoen T, Garett S, Bioinformatics 2010 26 12 1513 1519 10.1093/bioinformatics/btq226 20444838
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. 1513-1519
    • Lam-On, N.1    Boongoen, T.2    Garett, S.3
  • 5
    • 24944539029 scopus 로고    scopus 로고
    • Consensus clustering and functional interpretation of gene expression data
    • 10.1186/gb-2004-5-11-r94 15535870
    • Consensus clustering and functional interpretation of gene expression data. Swift S, Tucker A, Vinciotti V, Martin N, Orengo C, Liu X, Kellam P, Genome Biol 2004 5 94 10.1186/gb-2004-5-11-r94 15535870
    • (2004) Genome Biol , vol.5 , pp. 1894
    • Swift, S.1    Tucker, A.2    Vinciotti, V.3    Martin, N.4    Orengo, C.5    Liu, X.6    Kellam, P.7
  • 6
    • 78649596173 scopus 로고    scopus 로고
    • Merged consensus clustering to assess and improve class discovery with microarray data
    • 10.1186/1471-2105-11-590 21129181
    • Merged consensus clustering to assess and improve class discovery with microarray data. Simpson TI, Armstrong JD, Jarman AP, BMC Bioinformatics 2010 11 590 10.1186/1471-2105-11-590 21129181
    • (2010) BMC Bioinformatics , vol.11 , pp. 590
    • Simpson, T.I.1    Armstrong, J.D.2    Jarman, A.P.3
  • 7
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    • 10.1093/bioinformatics/btl011 16434443
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Pan W, Bioinformatics 2006 22 7 795 801 10.1093/bioinformatics/btl011 16434443
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 795-801
    • Pan, W.1
  • 8
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • DOI 10.1093/bioinformatics/btl065
    • Incorporating biological knowledge into distance based clustering analysis of gene expression data. Huang D, Pan W, Bioinformatics 2006 22 10 1259 1268 10.1093/bioinformatics/btl065 16500932 (Pubitemid 43779020)
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1259-1268
    • Huang, D.1    Pan, W.2
  • 9
    • 42149156031 scopus 로고    scopus 로고
    • Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data
    • DOI 10.1186/1471-2105-8-S10-S3
    • Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data. Costa IG, Krause R, Opitz L, Schliep A, BMC Bioinformatics 2007 8 Suppl 10 3 10.1186/1471-2105-8-S10-S3 (Pubitemid 351997727)
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 10
    • Costa, I.G.1    Krause, R.2    Opitz, L.3    Schliep, A.4
  • 10
    • 40449140216 scopus 로고    scopus 로고
    • Microarray data mining using landmark gene-guided clustering
    • DOI 10.1186/1471-2105-9-92
    • Microarray data mining using landmark gene-guided clustering. Chopra P, Kang J, Yang J, Cho HJ, Kim HS, Lee MG, BMC Bioinformatics 2008 9 92 10.1186/1471-2105-9-92 18267003 (Pubitemid 351344687)
    • (2008) BMC Bioinformatics , vol.9 , pp. 92
    • Chopra, P.1    Kang, J.2    Yang, J.3    Cho, H.J.4    Kim, H.5    Lee, M.-G.6
  • 11
    • 67649840899 scopus 로고    scopus 로고
    • Seeing the forest for the trees: Using the gene ontology to restructure hierarchical clustering
    • 10.1093/bioinformatics/btp327 19497934
    • Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering. Dotan-Cohen D, Kasif S, Melkman AA, Bioinformatics 2009 25 14 1789 1795 10.1093/bioinformatics/btp327 19497934
    • (2009) Bioinformatics , vol.25 , Issue.14 , pp. 1789-1795
    • Dotan-Cohen, D.1    Kasif, S.2    Melkman, A.A.3
  • 12
    • 60049085522 scopus 로고    scopus 로고
    • Fuzzy c-means clustering with prior biological knowledge
    • 10.1016/j.jbi.2008.05.009
    • Fuzzy c-means clustering with prior biological knowledge. Tari L, Baral C, Kim S, J Biomed Inf 2009 42 1 74 81 10.1016/j.jbi.2008.05.009
    • (2009) J Biomed Inf , vol.42 , Issue.1 , pp. 74-81
    • Tari, L.1    Baral, C.2    Kim, S.3
  • 14
    • 80051750853 scopus 로고    scopus 로고
    • Knowledge based cluster ensemble for cancer discovery from biomolecular data
    • Knowledge based cluster ensemble for cancer discovery from biomolecular data. Yu Z, Wong H, You J, Yang Q, Liao H, IEEE Trans Nanobiosci 2011 10 2 76 85
    • (2011) IEEE Trans Nanobiosci , vol.10 , Issue.2 , pp. 76-85
    • Yu, Z.1    Wong, H.2    You, J.3    Yang, Q.4    Liao, H.5
  • 17
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering, statistics and computing
    • A tutorial on spectral clustering, statistics and computing. Luxburg UV, ACM Comput Surv 2007 17 4 395 416
    • (2007) ACM Comput Surv , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.V.1
  • 21
    • 60849101344 scopus 로고    scopus 로고
    • Clustering cancer gene expression data: A comparative study
    • 10.1186/1471-2105-9-497 19038021
    • Clustering cancer gene expression data: a comparative study. deSouto M, Costa I, de Araujo D, Schliep A, Ludermir T, BMC Bioinformatics 2008 9 497 10.1186/1471-2105-9-497 19038021
    • (2008) BMC Bioinformatics , vol.9 , pp. 497
    • Desouto, M.1    Costa, I.2    De Araujo, D.3    Schliep, A.4    Ludermir, T.5
  • 23
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • 10.1126/science.286.5439.531 10521349
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Golub T, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Science 1999 286 5439 531 537 10.1126/science.286.5439.531 10521349
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 24
    • 18544375333 scopus 로고    scopus 로고
    • Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • 10.1038/ng765 11731795
    • Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Armstrong S, Staunton J, Silverman L, Pieters R, Boer M, Minden M, Nat Genet 2002 30 1 41 47 10.1038/ng765 11731795
    • (2002) Nat Genet , vol.30 , Issue.1 , pp. 41-47
    • Armstrong, S.1    Staunton, J.2    Silverman, L.3    Pieters, R.4    Boer, M.5    Minden, M.6
  • 29
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles: A knowledge reuse framework for combining multiple partitions
    • Cluster ensembles: a knowledge reuse framework for combining multiple partitions. Strehl A, Ghosh J, J Mach Learn Res 2002 3 583 617
    • (2002) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 30
    • 0000008146 scopus 로고
    • Comparing partitions
    • 10.1007/BF01908075
    • Comparing partitions. Hubert L, Arabie P, J Classif 1985 2 1 193 218 10.1007/BF01908075
    • (1985) J Classif , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.